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Introduction

Random Matrix Theory is the branch of mathematics which studies measurable functions

with values in matrices. It was initiated through the work of Wishart in 1920’s. In this

theory, it is of interest to study properties related with the spectrum of random matrices,

such as the eigenvalues distribution, singularity of random matrices, and the existence of

properties in the limit when the dimension of the random matrices goes to infinity. In this

direction, Wigner proved in the 1950’s that the averaged spectral distribution of certain

random matrices converges to the semicircle distribution.

On the other hand, Free Probability Theory was introduced by Dan Voiculescu in the

1980’s aiming to solve the problem of isomorphism between von Neumann algebras gen-

erated by free groups. This theory considers analogous aspects with classical probability

theory, but in the non-commutative framework of operator algebras, and takes into account

non-commutative random variables and a notion of independence called “freeness”.

Free Probability Theory has become an increasing and relevant research area in mathe-

matics, and nowadays it is a very active field. Moreover, it has relationships with different

branches of mathematics such as combinatorics, operator algebras, probability, representa-

tions of symmetric groups, mathematical physics, and applications to wireless communica-

tion systems and quantum information theory.

One of the most relevant application of Free Probability is in Random Matrix The-

ory. Dan Voiculescu showed that independent Guassian matrices of dimension large enough

behave as free random variables in a non-commutative probability space. With this connec-

tion, Free Probability became a powerful tool to deal problems in random matrices. Since

then, it has been studied the asymptotic freeness of several types of random matrices and

so, for instance, computing the spectral distribution of limit of sums and products of such

matrices.

Even with the success of Free Probability in Random Matrix Theory, there are situations

in that the machinery of Free Probability is not enough; its scope is limited and it does

not fit correctly and completely in some types of random matrices. Starting from this,

variations and extensions of Free Probability have arisen from both theoretical and applied

iii



iv Introduction

motivations.

One of the settings in which usual Free Probability is not very suitable is when we are

considering random matrices having limiting joint distribution with respect non-normalized

trace. In particular, this implies that the matrices converge to the random variable zero

with respect the normalized trace. Then a different method than usual in Free Probability

is required to deal with this kind of random matrices.

An extension of Free Probability known as Type B Free Probability appeared in the

work [5] of Biane, Goodman and Nica, from a combinatorial motivation of finding an analo-

gous theory to Free Probability where non-crossing partitions are replaced by non-crossing

partitions asociated to Coxeter groups of type B. Thereafter, Belinschi and Shlyakhtenko

presented in [?] an analytic interpretation of the free convolution of type B. In their work,

they found out that this convolution can be expressed in terms of some kind of derivative

of distributions, leading them to define the Infinitesimal Free Probability as a better way to

understand Type B Free Probability. With this new notion, an study of infinitesimal free

cumulants was presented by Fevrier and Nica in [11]. However, a remaining open question

was about finding random matrices models in which Infinitesimal Free Probability could

be applied. The first who gave an answer to the above question was Shlyakhtenko in [17].

In his paper, he proved that rotationally invariant random matrices and finite-rank deter-

ministic matrices are asymptotically infinitesimally free and studied the outliers of sums of

both types of matrices.

Motivated by the Shlyakhtenko’s results, Collins, Hasebe and Sakuma studied in [8]

the spectrum of random matrices which are obtained as some selfadjoint polynomials in

random matrices with discrete spectrum and rotationally invariant random matrices having

a limiting non-commutative distribution, by defining a notion of independence called Cyclic

Monotone Independence. The objective of this master’s thesis is presenting the notion of

cyclic monotone independence along with its applications to random matrices, being [8] the

basis of this manuscript.

The organization of this work is the following. Aiming to make this text more accessible

to read for non-familiarized people in free probability, we present some preliminaries of

functional analysis and free probability. More precisely, Chapter 1 exposes some properties

of compact operators in order to establish the framework that we shall be using. The final

section of the chapter is dedicated to present a notion of convergence of eigenvalues of

compact operators which is characterized by convergence of traces. This notion fits in the

context of convergence in distribution of non-commutative probability spaces except that

the trace of an operator is not unital. This will be fundamental since the random matrices

that we shall consider converge to compact operators.

Chapter 2 presents the basics of Free Probability Theory such as the definition of non-
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commutative probability space, random variables and free independence. We also include

a brief presentation on free cumulants with an application in the proof of the Free Central

Limit Theorem. Chapter 3 shows the most important relations between Free Probability

and Random Matrices. We give some examples of random matrices ensembles and state the

celebrated Wigner’s semicircle law along a sketch of its proof. We also discuss some of the

most important examples of asymptotic freeness of random matrices and some ideas about

their proofs.

Chapters 4 and 5 correspond to the work of Collins, Hasebe and Sakuma about Cyclic

Monotone Independence and Random Matrix Theory. In Chapter 4, we expose the abstract

notion of Cyclic Monotone Independence and compute the eigenvalues of certain polyno-

mials in cyclically monotone independent random variables which are trace class operators.

The main contribution of this manuscript is presented in this chapter by providing an alter-

native proof to some formulas in [8] considering matrices of cyclically monotone independent

elements. This allows to show new formulas for another polynomials, which are described

in Proposition 4.2.2, Proposition 4.2.5, and Corollary 4.2.8.

Finally in the Chapter 5, we present the fact that random matrices with discrete spec-

trum and random matrices which are rotationally invariant are asymptotically cyclically

monotone independent if they are independent. This is shown in the context of averaged

convergence and almost sure convergence, being the Weingarten formula the main tool to

achieve this. We also present some generalizations and computations of limiting eigenvalues

of random matrices provided by the formulas obtained in Chapter 4 for some polynomi-

als. Numerical simulations are exposed in order to show graphically the agreement of the

eigenvalues and the approximation given by the cyclic monotone independence.
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Chapter 1

Spectrum of Compact Operators

This chapter is dedicated to present the tools of functional analysis that will be used in

this text. In the first section we collect some basic results about compact operators, being

the spectral theorem the most important of them. In the Section 2 we present the Hilbert-

Schmidt operators and trace class operators, along with some results associated to them.

In the Section 3 we expose the notion of convergence in eigenvalues introduced in [8] and a

moment method which allows to prove convergence in eigenvalues.

1.1 Preliminaries on Compact Operators

The purpose of this section is to establish the framework of functional analysis that we

will need in order to understand the presented results in this text. We give the notion

of spectrum of an operator, the definition of compact operator, results about compact

operators and the spectral theorem. All the results presented here can be found in standard

textbooks such as [10]. Throughout this section, X and Y will denote Hilbert spaces.

The class of objects which we consider in this work will be limit, in some sense, of

matrices. We recall that if X is a finite dimensional Hilbert space and T : X → X is linear

operator, then T is 1− 1 if only if T is invertible. However, this is not necessarily the case

when X is infinite dimensional. Because of this, when we are considering linear operators

on infinite dimensional spaces, it is convenient to consider a larger set than the eigenvalues

set of X.

Definition 1.1.1. Let X be a Hilbert space, I be the identity operator on X and T be an

linear operator on X.

1. We define the resolvent set of T by

ρ(T ) = {λ ∈ C : T − λI is invertible}.

1



2 Chapter 1. Spectrum of Compact Operators

2. We define the spectrum of T by

σ(T ) = {λ ∈ C : T − λI is not invertible}.

Furthermore, the spectrum of an operator can be partitioned as follows.

• The point spectrum σp(T ) of T is formed by the elements λ ∈ C such that T − λI is

not 1− 1, i.e., the eigenvalues of T .

• The continuous spectrum σc(T ) of T is formed by the elements λ ∈ σ(T ) such that

T − λI is 1 − 1 and R(T − λI) is dense, where R(S) denotes the range of the linear

operator S.

• The residual spectrum σr(T ) of T is formed by the elements λ ∈ C such that T − λI
is 1− 1 and R(T − λI) ⊂ X is not dense.

In the framework of Hilbert spaces, we can define the adjoint of a linear operator T :

X → Y which is determined by the condition

〈Tx, y〉 = 〈x, T ∗y〉, ∀ x ∈ X, y ∈ Y. (1.1)

We are interested in selfadjoint operators, i.e., linear operators T : X → X such that

T = T ∗. In particular, we have the following property about the spectrum of a selfadjoint

operator.

Proposition 1.1.2. Let T : X → X be a selfadjoint operator. Then

1. the operator norm satisfies that ‖T‖ = sup{|λ| : λ ∈ σ(T )},

2. σ(T ) ⊂ R.

The other type of linear operators which we are interested in are the compact opera-

tors. This class of linear operators behave in some way as linear operators between finite

dimensional spaces. A concrete definition can be written in the following way.

Definition 1.1.3. Let T : X → Y a linear operator. We say that T is a compact operator

if the closure of TBX = {Tx : ‖x‖X ≤ 1} ⊂ Y is compact.

The next lemma give us a characterization of compact operators.

Lemma 1.1.4. Let T : X → Y be a linear operator. Then T is compact if only if for any

{xn} ⊂ X bounded sequence we have that {Txn} ⊂ Y has a convergent subsequence.
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Readily from the definition, we have that if T : X → Y is a compact operator, then

T is bounded and hence continuous. Indeed, if T is compact then TBX is compact and

then TBX is bounded. As a consequence, the operator norm of T is finite since ‖T‖ =

sup‖x‖≤1 ‖Tx‖ <∞. Even more, we have the following proposition.

Proposition 1.1.5. The set of compact operators T : X → X, K(X), is a closed subspace

of B(X) = {T : X → X : T is a bounded linear operator}. Moreover, K(X) is an ideal of

B(X), i.e., if T ∈ K(X) and S ∈ B(X), then ST, TS ∈ K(X).

Example 1.1.6. We say that a linear operator T : X → Y is a finite-rank operator if

dim(R(T )) < ∞. We see that if T is a finite-rank operator, then T is compact. Actually,

we have that TBX is bounded and closed in R(T ) which is finite dimensional. Using the

Heine-Borel Theorem, we conclude that TBX is compact.

The converse of the above example is not true in general. However, as we mentioned at

the beginning of this section, compact operators behave in a similar way that finite-rank

operators. The precise statement of this relation is described in the next result.

Theorem 1.1.7. Let T : X → Y be a compact operator. Then, given any ε > 0, there exist

a finite-dimensional subspace M in R(T ) such that, for any x ∈ X,

inf
m∈M

‖Tx−m‖ ≤ ε‖x‖

Using the last example and Proposition 1.1.5, we have that the limit (in the operator

norm) of finite-rank operators is a compact operator. On the other hand, by Theorem

1.1.7 we also have that the range of compact operators can be approximated by a finite-

dimensional subspace. This approximation property implies that every compact operator

can be approximated by finite-rank operators.

Theorem 1.1.8. Let T : X → Y be a compact operator. Then T is the limit in the operator

norm of a sequence of finite-rank operators.

Now suppose that a compact operator T is invertible in B(X). Then there exists a

bounded linear operator S such that ST = I = TS and so I is compact and the closed unit

ball in X is also compact. However, this is not possible when X is infinite dimensional. We

conclude that if X is infinite dimensional, then every compact operator T is not invertible,

and hence 0 ∈ σ(T ).

The spectrum of compact operators exhibits some interesting properties. Two of these

are stated in the next theorem.

Theorem 1.1.9. Let T : X → X be a compact operator.
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1. (Fredholm’s alternative) If λ 6= 0, then λ ∈ σp(K) or λ ∈ ρ(K), i.e., except possibly

by λ = 0, the spectrum of T consists only of eigenvalues. Moreover, if λ ∈ σp(K),

λ 6= 0, then its algebraic multiplicity is finite.

2. For every k ∈ N, the set {λ ∈ σ(T ) : |λ| ≥ 1
k} is finite. Then σ(T ) is countable and

its only possible accumulation point is λ = 0.

Finally, the following theorem states that compact selfadjoint operators have a spectral

decomposition similar to symmetric matrices.

Theorem 1.1.10 (Spectral Theorem for compact selfadjoint operators). Let T : X → X be

a compact selfadjoint operator. Then X has an orthonormal basis {en}∞n=1 of eigenvectors

of T corresponding to eigenvalues {λn}∞n=1. Moreover, we have that

1. The eigenvalues λi are real and 0 is the only possible accumulation point.

2. The eigenspaces corresponding to distinct eigenvalues are orthogonal.

3. The eigenspaces corresponding to non-zero eigenvalues are finite-dimensional.

Remark 1.1.11. Let T : X → X be a compact selfadjoint operator. The above theorem

establishes that the eigenvalues of T can be ordered as

|λ1| ≥ |λ2| ≥ |λ3| ≥ · · · .

Furthermore, the previous theorem says that

Tx =

∞∑
n=1

λn〈x, en〉en, ∀ x ∈ X. (1.2)

If T has finitely many non-zero eigenvalues, then T is a finite-rank operator. Otherwise, it is

possible to show that λn → 0 as n→∞. The reciprocal is also true. Indeedm assume that

T is an operator on a separable Hilbert space X with a countably infinite orthonormal basis

{en}∞n=1 consisting of eigenvectors of T . Moreover, assume that the eigenvalues {λn}∞n=1

corresponding to the eigenvectors {en}∞n=1 satisfy that λn → 0 as n → ∞. Then we have

that T is a compact operator. This can be seen by considering the sequence of finite-rank

operators {Tn}∞n=1, where each Tn is defined as Tnx =
∑n

m=1 λm〈x, em〉em, for any x ∈ X.

Since this sequence converges to T and each Tn is finite-rank, then Tn is compact and its

limit is compact. This shows that T is compact.
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1.2 Hilbert-Schmidt and Trace Class Operators

For the purpose of this work, we are interested in operators for which a notion of trace can

be defined even in the case of infinite dimensional space. Obviously, a general notion of

trace should include the well known case of finite dimensional spaces. Before of considering

this class of operators, it is convenient to define a larger class of operators.

Definition 1.2.1. Let X be a Hilbert space and {ei}i∈I be an orthonormal basis of X. We

say that T ∈ B(X) is a Hilbert-Schmidt operator if∑
i∈I
‖Tei‖2 <∞. (1.3)

A natural question arises when we want to drop out the choice of an specific orthonormal

basis of X. The following results says is that the value of the series in (1.3) does not depend

of the basis.

Theorem 1.2.2. Let X be a Hilbert space. If {eα}α∈I and {fα}α∈J are orthonormal bases

for X and T ∈ B(H) then∑
α∈I
‖Teα‖2 =

∑
α∈J
‖T ∗fα‖2 =

∑
α∈J
‖Tfα‖2. (1.4)

We denote by S2(X) the set of Hilbert-Schmidt operators in B(X). If {ei}i∈I is an

orthonormal basis of X and T ∈ B(X), we define the Hilbert-Schmidt norm of T as

‖T‖2 =

(∑
i∈I
‖Tei‖2

) 1
2

. (1.5)

Then we have that T ∈ S2(X) if T ∈ B(X) and ‖T‖2 <∞. It can be proved that S2(X)

is a vector space, an ∗-ideal, and ‖ · ‖2 is indeed a norm on S2(X). Moreover, the topology

on S2(X) induced by the Hilbert-Schmidt norm is finer than the subspace topology given

by the operator norm on B(X). The later fact is deduced from the next result.

Theorem 1.2.3. Let X be a Hilbert space. If T ∈ S2(X) then ‖T‖ ≤ ‖T‖2.

Remark 1.2.4. A first example of Hilbert-Schmidt operator is given by finite-rank oper-

ators. Actually, we have that the space of finite-rank operators on X is a dense subset of

S2(X) with the norm topology given by ‖ ·‖2. But by Theorem 1.2.3, if {Tn}n is a sequence

of finite rank operators which converges to a Hilbert-Schmidt operator with respect to ‖·‖2,

then it does with respect to the operator norm. So, using Theorem 1.1.8, we conclude that

if T ∈ S2(X), then T is a compact operator.
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Using Theorem 1.2.2, if {eα}α∈I and fαα∈J are orthonormal bases for a Hilbert space

X and T ∈ B(X), then we have that∑
α∈I
〈|T |eα, eα〉 =

∑
α∈J
〈|T |fα, fα〉,

where |T | =
√
T ∗T . This motivate us to give the following definition.

Definition 1.2.5. Let X be a Hilbert space and {ei}i∈I be an orthonormal basis for X.

We say that T ∈ B(X) is trace class operator if∑
i∈I
〈|T |ei, ei〉 <∞.

We denote by S1(X) the set of trace class operators on X. In an analogous way that

Hilbert-Schmidt operators, we define

‖T‖1 =
∑
i∈I
〈|T |ei, ei〉.

Then T ∈ S1(X) if T ∈ B(X) and ‖T‖1 <∞.

There is a clear relation between trace class operators and Hilbert-Schmidt operators

since ‖T‖1 = ‖|T |1/2‖22. Moreover, there is a deeper relationship which is established in the

following characterizations of trace class operators. A proof appears in [10] (Proposition

18.8).

Theorem 1.2.6. Let X be a Hilbert space and T ∈ B(X). The following statements are

equivalent.

1. T ∈ S1(X).

2. |T |1/2 ∈ S2(X).

3. T is product of two elements of S2(X).

Remark 1.2.7. From the last theorem, we have that if T is product of two elements of

S2(X), then T ∈ S2(X) since S2(X) is an ideal. In particular we have that S1(X) ⊂ S2(X)

and so any trace class operator is compact.

The following result is very useful since it motives the definition of traces in the case

of trace class operators. The proof of this result can be also found in Chapter 3 of [10]

(Proposition 18.9).
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Theorem 1.2.8. Let X be a Hilbert space. If T ∈ S1(X), and {ei}i∈I is an orthonormal

basis for X then ∑
i∈I
|〈Tei, ei〉| <∞,

and if {fj}j∈J is an orthonormal basis for X then∑
i∈I
〈Tei, ei〉 =

∑
j∈J
〈Tfj , fj〉.

With the above result, we are able to define the trace of a trace class operator.

Definition 1.2.9. Let X be a Hilbert space and {ei}i∈i be a orthonormal basis for X. If

T ∈ S1(X), we define the trace of T , Tr(T ) as

Tr(T ) =
∑
i∈I
〈Tei, ei〉.

Remark 1.2.10. 1. We can note that in the case that X is finite dimensional and T is

seen as an element of Mn(C), then Tr(T ) corresponds to the usual trace of a matrix

which is the sum of the diagonal entries of T .

2. As we expect, the trace can be thought as a function Tr : S1(X)→ C and it satisfies

to be a positive linear functional.

As the space S2(X), the set trace class operators S1(X) is a complete normed vector

space with the norm ‖ · ‖1. On the other hand, it is easy to see that a finite-rank operator

is trace class. It can be then show that the space of finite-rank operators is a dense subset

of S1(X) with respect the trace norm.

The next theorem collects some of the basic properties of the trace and the trace norm.

Some of them are the same that we have in finite matrices .

Theorem 1.2.11. Let X be a Hilbert space and T ∈ S1(X).

1. T ∗ ∈ S1(X) and Tr(T ∗) = Tr(T ).

2. If A ∈ B(X) then AT, TA ∈ S1(X), Tr(AT ) = Tr(TA), and |Tr(AT )| ≤ ‖A‖‖T‖1.

3. ‖T ∗‖1 = ‖T‖1.

4. If A ∈ B(X) then ‖TA‖1 = ‖T‖1‖A‖.

5. ‖T‖ ≤ ‖T‖1.
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Finally, we present a generalization of the Hilbert-Schmidt and trace class operators

called the Schatten class operators.

Definition 1.2.12. Let 1 ≤ p <∞ . An operator T ∈ B(X) is called a Schatten operator

of class p if ‖T‖p := ‖|T |p‖1/p1 <∞.

We shall denote the set of Schatten operators of class p as Sp(X). This is a Banach

space with respect to the norm ‖ · ‖p. For the values p = 1, 2 we get the trace class and

Hilbert-Schmidt operators, respectively.

The next proposition summarizes some of results related with Schatten class operators.

Proposition 1.2.13. Let X be a Hilbert space.

1. Sp(X) is an ∗-ideal of B(X).

2. Sp(X) is a complete normed vector space with respect to ‖ · ‖p.

3. If p ≤ q then Sp(X) ⊂ Sq(X) and ‖T‖ ≤ ‖T‖q ≤ ‖T‖p for any T ∈ Sp(X).

4. Hölder inequality holds for ‖ · ‖p: if 0 ≤ p, q, r < ∞ and 1
p + 1

p = 1
r , A ∈ Sp(X),

B ∈ Sq(X), then AB ∈ Sr(X), and ‖AB‖r ≤ ‖A‖p‖B‖q.

According to the above properties, the spaces Sp(X) can be considered as non-commutative

analogous spaces to the Lp(Ω, µ) spaces.

Finally, as in the cases of trace class and Hilbert-Schmidt operators, it is possible to

show that the Schatten operators of class p are compact operators. Hence, if T ∈ Sp(X)

is selfadjoint, by applying the spectral theorem (Theorem 1.1.10) we have that there exists

an ortonormal basis {en}∞n=1 of X consisting of the eigenvectors of T and if λn is the

eigenvalue associated to en, then Equation (1.2) holds. Since T ∈ Sp(X) then |T |p ∈ S1(X)

and computing the trace using the basis {en}n we get

‖T‖pp = Tr(|T |p) =
∞∑
n=1

〈|T |pen, en〉 =
∞∑
n=1

|λn|p,

where we use that T is selfadjoint (and then the eigenvalues of |T | are {|lλn|}∞n=1). We can

state this result in the following proposition.

Proposition 1.2.14. Let X be a Hilbert space and T ∈ B(X) be a compact operator with

eigenvalues {λn}∞n=1.

1. If T ∈ Sp(X), then

‖T‖p =

( ∞∑
n=1

|λn|p
)1/p

. (1.6)
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2. (Lidskii) If T ∈ S1(X), it is satisfied that

Tr(T ) =

∞∑
n=1

λn. (1.7)

1.3 Convergence of Eigenvalues of Compact Selfadjoint Op-

erators

In this section, based in Section 2 of [8], we present a notion of convergence of eigenvalues of

compact selfadjoint operators. Then we will study a moment method which characterizes

the convergence of eigenvalues.

From the above sections, we know that compact selfadjoint operators have discrete spec-

trum contained in R. In order to define a convergence of eigenvalues of compact operators,

it will be necessary to introduce a convenient order of their eigenvalues.

Definition 1.3.1. Let {xi}∞i=1 ⊂ R a sequence converging to 0. We will say that {xi}∞i=1 is

properly arranged if |xi| ≥ |xi+1|, ∀ i ∈ N.

A proper arrangement of a sequence is not necessarily unique. For this, it is convenient

to split the sequence in its non-negative and non-positive part, and then consider the proper

arrangements of these two sequences which will be unique.

If a is a compact selfadjoint operator in a separable Hilbert space, we will denote by

EV(a) the multiset of eigenvalues λi(a) of a. We will assume that the sequence of eigenvalues

{λi(a)}i≥1 is properly arranged. In the same way, we split the sequence into its non-negative

and the non-positive part, {λ+
i (a)}i≥1 and {λ−i (a)}i≥1 respectively, and we will assume that

both sequences are properly arranged. The notion of convergence of eigenvalues that we

shall use is the following.

Definition 1.3.2. Let a and ak, k ∈ N be compact selfadjoint operators in separable Hilbert

spaces H and Hk, respectively. We will say that ak converges to a in eigenvalues if, for all

i ≥ 1,

lim
k→∞

λ+
i (ak) = λ+

i (a),

lim
k→∞

λ−i (ak) = λ−i (a).

In case that some sequence of eigenvalues is finite, we will add infinitely many zeros at the

end of the sequence. Convergence of eigenvalues will be denoted by lim
k→∞

EV(ak) = EV(a).

The next result gives us a characterization of the convergence in eigenvalues, which will

be useful to establish a kind of moment method respect the trace on Hilbert spaces.
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Proposition 1.3.3. Let a and ak, k ∈ N be compact selfadjoint operators in separable

Hilbert spaces H and Hk, respectively. The next statements are equivalent:

1. ak converges to a in eigenvalues.

2. lim
k→∞

TrHk(f(ak)) = TrH(f(a)), ∀ f ∈ C0,b(R).

3. lim
k→∞

TrHk(f(ak)) = TrH(f(a)), ∀ f ∈ C∞0,b(R).

Here C0,b(R) denotes the set of real-valued bounded continuous functions on R that vanish

in a neighborhood of 0, and C∞0,b(R) is the set of functions in C0,b(R) that are infinitely

many times differentiable.

Proof. We show (1) ⇒ (2) and (3) ⇒ (1). The implication (2) ⇒ (3) is trivial. In the

proof, we denote λ±i (k) := λ±i (ak) for any i ≥ 1 and k ∈ N, where we are considering

that the non-negative and non-positive parts of the eigenvalues are properly arranged, i.e.,

λ+
1 (k) ≥ λ+

2 (k) ≥ · · · ≥ 0 and λ−1 (k) ≤ λ−2 (k) ≤ · · · ≤ 0. In a similar way, we denote

λi = λi(a) for any i ≥ 1 and we also consider the properly arranged sequences of non-

negative and non-positive eigenvalues.

((1) ⇒ (2)) Let f ∈ C0,b(R). Then there exists δ > 0 such that f(x) = 0 for any

x ∈ (−δ, δ). By Theorem 1.1.9, there exist m, ` ∈ N such that 0 ≤ λ+
`+1 < δ ≤ λ+

` and

λ−m ≤ −δ < λ−m+1 ≤ 0. Since the sequences of eigenvalues are properly arranged, we have

that 0 ≤ λ+
i < δ and −δ < λ−j ≤ 0, for any i > ` and j > m. On the other hand, we

have that ak converges to a in eigenvalues. In particular λ+
`+1(k)→ λ+

`+1 as k →∞. Since

λ+
`+1 < δ, then there exists k+

0 ∈ N such that λ+
`+1(k) < δ for any k ≥ k+

0 . Because of

{λ+
i (k)}i≥1 is a non-increasing sequence for any k ∈ N, we get that λ+

i (k) < δ for any

k ≥ k+
0 and i ≥ ` + 1. In a similar way, we have that there exists k−0 ∈ N such that

λ−i (k) > −δ for any k ≥ k−0 and i ≥ m+ 1.

Using the assumption of convergence in eigenvalues and that f is continuous and vanishes

in (−δ, δ) we have that

lim
k→∞

TrHk(f(ak)) = lim
k→∞

∑̀
i=1

f
(
λ+
i (k)

)
+ lim
k→∞

m∑
i=1

f
(
λ−i (k)

)
=

∑̀
i=1

f
(
λ+
i

)
+

m∑
i=1

f
(
λ−i
)

= TrH(f(a)),

that is what we wanted.

((3)⇒ (1)) We proceed by contradiction, by assuming that convergence in eigenvalues is

not satisfied and giving a function f ∈ C∞0,b(R) for which the statement 3 of the proposition
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is not true. First, we note that the set of eigenvalues of the operators {ak}k∈N are uniformly

bounded. Indeed, consider f ∈ C∞0,b(R) such that f is non-negative, f(x) = 0 if |x| ≤ ‖a‖,
and f(x) = 1 if |x| > 2‖a‖. Since a is selfadjoint, all its eigenvalues are in [−‖a‖, ‖a‖],
and then TrH(f(a)) = 0. By assumption, TrHk(f(ak)) converges to TrH(f(a)) as k → ∞.

Because of f is positive, there exists k0 ∈ N such that TrHk(f(ak)) < 1 for k ≥ k0, and

hence ak does not have eigenvalues λ such that |λ| > 2‖a‖, for each k ≥ k0. This allows to

conclude that all the eigenvalues of {ak}k∈N are contained in some interval [−M,M ].

We work first with the non-negative eigenvalues. The case of non-positive eigenvalues

can be done in the same way. In order to get a contradiction, assume that λ+
1 (k) 6→ λ+

1 as

k → ∞. Then, there exists an increasing sequence of natural numbers {kj}j≥1 and a real

number µ+
1 ∈ [0,M ] such that λ+

1 6= µ+
1 and λ1(kj) → µ+

1 as j → ∞. Let ε = |λ+
1 − µ

+
1 |

which is greater than zero by assumption. Depending of which the sign of λ+
1 − µ

+
1 is, we

take the following functions to get a contradiction.

If λ+
1 − µ

+
1 < 0, we take f ∈ C∞0,b(R) such that f ≥ 0, f(x) = 1 if x ≥ µ+

1 − ε/4, and

f(x) = 0 if x ≤ λ+
1 +ε/4. Since λ+

1 is the largest eigenvalue of a, we have that TrH(f(a)) = 0.

On the other hand, using the sequence {kj}j∈N, we have that λ+
1 (kj) ≥ µ+

1 − ε/4 for large

enough j, and then TrHkj (f(akj )) ≥ f(λ+
1 (kj)) = 1. Thus we get a contradiction to the fact

that TrHk(f(ak)) converges to TrH(f(a)) as k →∞.

The other case is when µ+
1 − λ

+
1 < 0. Consider f ∈ C∞0,b(R) such that f ≥ 0, f(x) = 1

if x ≥ λ+
1 − ε/4, and f(x) = 0 if x ≤ µ+

1 + ε/4. In the same way that the above case,

TrH(f(a)) ≥ f(λ+
1 ) = 1 and TrHkj (f(akj )) = 0 for large enough j. This again contradicts

that TrHk(f(ak)) converges to TrH(f(a)) as k →∞.

We have to prove then that λ+
1 (k) converges to λ+

1 as k → ∞. Now we use induction

on i. Assume that the there exists m ≥ 2 such that λ+
i (k) → λ+

i as k → ∞, for any

i = 1, . . . ,m − 1. We shall prove that λ+
m(k) → λ+

m as k → ∞. We proceed again by

contradiction, in a similar fashion to the case of λ+
1 . Suppose that there exist µ+

m and an

increasing sequence {kj}j∈N such that µ+
m 6= λ+

m and λ+
m(kj) → µ+

m as j → ∞. Notice

that by using a similar argument to the proof of the eigenvalues of {ak}k∈N are uniformly

bounded, we can take µ+
m ∈ [0, λ+

m−1]. Let ε = |λ+
m − µ+

m| > 0. We have two cases.

If λ+
m − µ+

m < 0, we take f ∈ C∞0,b(R) such that f ≥ 0, f(x) = 1 if x ≥ µ+
m − ε/4, and

f(x) = 0 if x ≤ λ+
m + ε/4. Since λ+

i ≥ µ+
m − ε/4 for i = 1, . . . ,m− 1 we have that

TrH(f(a)) =

m−1∑
i=1

f(λ+
i ) = m− 1.

On the other hand, for large enough j, we have that λ+
m(kj) ≥ µ+

m−ε/4 and so are λ+
i (kj) ≥

µ+
m−ε/4 for i = 1, . . . ,m. Hence TrHkj (f(akj )) ≥ m for large enough j, and this contradicts
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the fact that TrHk(f(ak)) converges to TrH(f(a)) as k →∞.

Finally, if µ+
m − λ+

m < 0, we consider f ∈ C∞0,b(R) such that f ≥ 0, f(x) = 1 if x ≥
λ+
m − ε/4, and f(x) = 0 if x ≤ µ+

m + ε/4. In the same way that the previous case, we have

that TrH(f(a)) ≥ m and TrHkj (f(akj )) = m− 1 for large enough j, which lead us again to

a contradiction.

Hence we have proved that λ+
m(k)→ λ+

m as k →∞. Using mathematical induction, we

have that λ+
i (k)→ λ+

i as k →∞, for every i ∈ N, that is what we wanted to prove. �

The above proposition motivates us to define convergence in distribution of compact

operators. This notion can be considered as an extension of convergence in distribution in

the framework of non-commutative probability spaces. But since we are considering compact

selfadjoint operators instead of trace class operators, we have to deal with operators f(a)

which are trace class when a is a compact operator and f ∈ C0,b(R).

Definition 1.3.4. Let ai, ai(n), i = 1, . . . , k, be compact selfadjoint operators in separable

Hilbert spaces H,Hn, respectively. We say that (a1(n), . . . , ak(n)) converges in compact

distribution to (a1, . . . , ak) with respect to TrHn ,TrH when n → ∞ if for each function

fi ∈ C0,b(R), i = 1, . . . , k, m ∈ N, (i1, . . . , im) ∈ {1, . . . , k}m, we have

lim
n→∞

TrHn (fi1(ai1(n)) · · · fim(aim(n))) = TrH (fi1(ai1) · · · fim(aim)) . (1.8)

With Proposition 1.3.3, we can prove an analogous of the moment method in the case

of convergence of eigenvalues. First, we will need the next approximation lemma, where

‖ · ‖[a,b] denotes the supremum norm of continuous function in [a, b].

Lemma 1.3.5. Let 0 < δ < α and let p ∈ N. If f ∈ Cp(R) and f(x) = 0 for all x ∈ [−δ, δ],
then for all ε > 0, there exists a polynomial P such that 0 = P (0) = p′(0) = · · · = P (p−1)(0),

‖f − P‖[−δ,δ] < ε, and |P (x)| ≤ ε|x|p, for all x ∈ [−δ, δ].

Proof. The lemma can be proved using Weierstrass’ approximation theorem. �

The statement of the announced moment method respect the trace is the following.

Proposition 1.3.6. Let a, ak, k ≥ 1 be selfadjoint operators on separable Hilbert spaces

H,Hk, respectively. We assume that a ∈ Sp(H) and ak ∈ Sp(Hk), for any k ≥ 1, for some

p ∈ N. Suppose that TrHk(ank)→ TrH(an) if k →∞, for each n ≥ p. Then ak converges to

a in eigenvalues.

Proof. We recall the space of p-Schatten class operators Sp(H) is defined in Definition 1.2.12

as the space of operators a such that their p-Schatten norm ‖a‖p is finite. Note that we can

take p as even since Sp(H) ⊂ Sp+1(H). In order to prove the proposition, we shall use the
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characterization of convergence in eigenvalues given in Proposition 1.3.3. Actually, it will

be enough to prove that for all f ∈ Cp0,b(R) it holds that

lim
k→∞

TrHk(f(ak)) = TrH(f(a)).

Let f ∈ Cp0,b(R) and let δ > 0 be such that f(x) = 0, for all x ∈ [−δ, δ]. We recall that we

can consider a sequence of eigenvalues as an infinite sequence even if the Hilbert space has

finite dimension. So, we denote as {λi}∞i=1 and {λi(k)}∞i=1 the properly arranged eigenvalues

of a, ak, k ≥ 1, respectively.

Let α := sup
k≥1
‖ak‖p. Notice that because the assumption, we have that

lim
k→∞

‖ak‖p = lim
k→∞

TrHk(apk)
1/p = TrH(ap)1/p = ‖a‖p <∞,

Then {‖ak‖p}k∈N is a convergent sequence and so α <∞. We can also assume that α > 0

since that in the other case we have a = 0 = ak for all k ≥ 1. Observe that the multiset

EV(a) can be seen as a positive measure on R, where the measure of {λ} is the dimension

of the eigenspace of a with eigenvalue λ. So, we can use Chebyshev’s inequality to get

|{i ∈ N : |λi(k)| > δ}| = |{i ∈ N : λi(k)p > δp}| ≤
Tr(apk)

δp
≤ αp

δp
. (1.9)

In the same way, we obtain |{i ∈ N : |λi| > δ}| ≤ αp

δp . If we define N = dαpδp e and from

the fact that the eigenvalues are properly arranged, we have that |λi(k)|, |λi| ≤ δ, for any

k ≥ 1 and i ≥ N. Using that ‖a‖pp, ‖ak‖pp < αp, we can see that all the eigenvalues of a, ak

are contained in [−α, α]. Then, given ε > 0, by Lemma 1.3.5, there exists a polynomial

P (x) = bpx
p + bp+1x

p+1 + · · · + bqx
q such that ‖f − P‖[−α,α] < ε/N and |P (x)| ≤ εα−pxp

for x ∈ [−δ, δ]. The latter is because we can take δ > 0 small enough such that N ≥ αp.

Separating the sum, using that f vanishes in [−δ, δ] and triangle inequality, for all k ≥ 1

we have that∣∣∣∣∣
∞∑
i=1

f(λi(k))−
∞∑
i=1

f(λi)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

f(λi(k))−
N∑
i=1

f(λi)

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

f(λi(k))−
N∑
i=1

f(λi)

∣∣∣∣∣+

∣∣∣∣∣
N∑
i=1

P (λi(k))−
N∑
i=1

P (λi)

∣∣∣∣∣
+

∣∣∣∣∣
N∑
i=1

P (λi)−
N∑
i=1

f(λi)

∣∣∣∣∣
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≤ 2ε+

∣∣∣∣∣
N∑
i=1

P (λi)−
N∑
i=1

f(λi)

∣∣∣∣∣ . (1.10)

Now, using the bound for P in [−δ, δ] we obtain that

∞∑
i=N+1

|P (λi(k))| ≤ εα−p
∞∑

i=N+1

|λi(k)|p ≤ εα−p‖ak‖pp ≤ ε, (1.11)

and in the same way we get
∑∞

i=N+1 |P (λi)| ≤ ε. Hence,∣∣∣∣∣
N∑
i=1

P (λi(k))−
N∑
i=1

P (λi)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

P (λi(k)) +

∞∑
i=N+1

P (λi(k))−
∞∑

i=N+1

P (λi(k))

+
∞∑

i=N+1

P (λi)−
∞∑

i=N+1

P (λi)−
N∑
i=1

P (λi)

∣∣∣∣∣
≤ 2ε+

∣∣∣∣∣
∞∑
i=1

P (λi(k))−
∞∑
i=1

P (λi)

∣∣∣∣∣ (1.12)

On the other hand, by assumption we have that

∞∑
i=1

λi(k)n = TrHk(ank) −−−→
k→∞

TrH(an) =
∞∑
i=1

λni ,

for any n ≥ p. Moreover, the coefficients of the terms of degree less than p in P are equal

to zero, then we can choose k0 ∈ N such that∣∣∣∣∣
∞∑
i=1

P (λi(k))−
∞∑
i=1

P (λi)

∣∣∣∣∣ ≤ ε, ∀ k ≥ k0. (1.13)

Finally, we can conclude that∣∣∣∣∣
∞∑
i=1

f(λi(k))−
∞∑
i=1

f(λi)

∣∣∣∣∣ ≤ 5ε, ∀ k ≥ k0 (1.14)

using Equations (1.10), (1.12) and (1.13). �

As a direct consequence of the above proposition, we have the following criterion to

prove that the multisets of eigenvalues of two selfadjoint p-Schatten class operators are the

same.

Corollary 1.3.7. Let a, b selfadjoint operators on separable Hilbert spaces H,K, respec-
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tively, such that a ∈ Sp(H) and b ∈ Sp(H), for some p ∈ N. If TrH(an) = TrK(bn) for all

n ≥ p, then EV(a) = EV(b).

Proof. Consider the sequences ak = a and bk = b, for each k ≥ 1. Then we have that

TrH(ank) = TrK(bnk), for any n ≥ p. By Proposition 1.3.6, ak converges in eigenvalues to b,

and, in the same way, bk converges in eigenvalues to a. Hence EV(a) = EV(b). �

We finish this section by noting that in Proposition 1.3.6, we assumed that there exists a

limiting operator a. This assumption may be omitted as we shall see in the next proposition.

Proposition 1.3.8. Let p be an even positive integer and Hk be a separable Hilbert space,

for each k ≥ 1. Let ak ∈ Sp(Hk) be a selfadjoint operator, for each k ≥ 1. Suppose that

αn := limk→∞TrHk(ank) ∈ R exists for all n ≥ p. Then there exist a separable Hilbert space

H and a selfadjoint operator a ∈ Sp(H) such that ak converges to a in eigenvalues and

αn = TrH(an), for all n > p.

Proof. As we noted in the proof of Proposition 1.3.6, we have that α = supk∈N ‖a‖p < ∞
and then |λi(k)| ∈ [0, α], for any k, i ∈ N. We construct a sequence of real numbers {λi}i∈N
as follows. As a bounded sequence of real numbers, we can take an increasing sequence

{k1,j}j≥1 ⊂ N such that λ1(k1,j) converges to some λ1 as j → ∞. Then, we take an

increasing subsequence {k2,j}j∈N ⊂ {k1,j}j≥1 such that λ2(k2,j) converges to some λ2 as

j → ∞. We proceed inductively in order to find a sequence {km,j} such that λm(km,j)

converges to some λm as j →∞, for every m ∈ N.

Now consider the subsequence {kj,j}j≥i ⊂ {ki,j}j∈N. Then λi(kj,j) → λi as j → ∞, for

each i ≥ 1. By construction, we have that {λi}i≥1 is properly arranged. Since p is even, by

Fatou’s lemma we have that

p∑
i=1

λpi ≤ lim inf
j→∞

∞∑
i=1

λi(kj,j)
p = lim inf

j→∞
TrHkj,j

(
apkj,j

)
≤ αp.

Hence there exist a separable Hilbert space H and a selfadjoint operator a ∈ Sp(H) such

that EV(a) = {λi}i∈N. We denote βn = TrH(an) for n ≥ p. Since Sp(H) ⊂ Sn(H) for

any n ≥ p, we have that βn < ∞ for any n ≥ p. We have now to show that αn = βn

for n ≥ p + 1. Let ε > 0. By applying Chebyshev’s inequality in the same way that we

established (1.9), we have that there exists m ∈ N such that |λi(k)| ≤ ε for all k ∈ N and

i > m. We have also that |λi| ≤ ε for i > m. Recalling that βn =
∑∞

i=1 λ
n
i , for n ≥ p + 1
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we have that

|αn − βn| ≤ |αn − TrHk(ank)|+ |TrHk(ank)− βn|

≤ |αn − TrHk(ank)|+

∣∣∣∣∣
m∑
i=1

(λi(k)n − λni )

∣∣∣∣∣+
∞∑

i=m+1

(|λi(k)|n + |λi|n) (1.15)

= |αn − TrHk(ank)|+

∣∣∣∣∣
m∑
i=1

(λi(k)n − λni )

∣∣∣∣∣+ εn−p

( ∞∑
i=m+1

(λi(k)p + λpi )

)
.

Note that the left-hand side does not depend of k. So, taking in particular the sequence

{kj,j}j∈N, we have have that the first term of the right-hand side of (1.15) converges to zero

by hypothesis. Also, the second term converges to zero by the construction of {kj,j}j∈N.

Finally, the last term is bounded by 2αpεn−p. We can conclude that αn = βn for each

n ≥ p+ 1. Notice that if we consider another sequence of limiting eigenvalues {λ′i}i∈N given

by another choice of the sequences {ki,j}j∈N, we would get that the β′n =
∑∞

i=1 λ
′
i = αn = βn,

for n ≥ p + 1. By applying Corollary 1.3.7, we have that {λ′i}i∈N = {λi}i∈N, and hence

the limiting eigenvalues do not depend of which sequences {ki,j}j∈N are considered. So, we

have that there exists a selfadjoint operator a ∈ Sp+1(H) such that TrHk(ank)→ TrH(an) as

k →∞, for any n ≥ p+ 1. We finish the proof by invoking Proposition 1.3.6 and therefore

ak converges in eigenvalues to a. �



Chapter 2

Free Probability Theory

In this chapter, we present the basic definitions and some of the most important results of

Free Probability Theory that we use throughout this work. First, we give the definition of

non-commutative probability space, and we introduce the notions of random variables and

distributions. In the second section, we talk about free independence of non-commutative

random variables, which is an analogous concept of independence of classical random vari-

ables. In Section 3, we give the definition of free cumulants, state some related results and

give an application to the Free Central Limit Theorem.

Mostly of the definition and results appearing here can found in the book of A. Nica

and R. Speicher [14]. For an easy reading of this chapter of preliminaries, we omit most of

the proofs of the results.

2.1 Non-commutative Probability Spaces

We introduce the notion of non-commutative probability. We recall what a probability

space is in the classical sense. Based in concepts like random variables, moments and

distributions, we shall find the motivation for their free counterparts.

We review some basics of probability theory.

Definition 2.1.1. We say that a tuple (Ω,F ,P) is a classical probability space if Ω is a set,

F is a σ-algebra of Ω and P is a probability measure, i.e. P is a measure P : F → [0, 1] such

that P(Ω) = 1.

It can be said that Ω is the set of possible results of a random experiment, F is the

collection of events, and for any event A ∈ F , P(A) is the probability that the event A

occurs.

17
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Definition 2.1.2. 1. Given a classical probability space (Ω,FP), we say that a function

X : Ω → C is a classical random variable if X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F , for any

B borelian set of C.

2. Given a classical probability space (Ω,F ,P) and a classical random variable X, we

define the distribution of the classical random variable X as the measure µ in (C,B(C))

given by

µ(A) = P(X−1(A)), A ∈ B(C), (2.1)

where B(C) is the Borel σ-algebra of C.

It can be consider that a random variable X is a quantification of the result of an

experiment, which means that X(ω) is assigned to the event ω ∈ Ω.

Definition 2.1.3. Given a random variable X in a probability space (Ω,F ,P), for any

measurable function f : C→ C we define

E(f(X)) :=

∫
Ω
f(X(ω)) dP(ω) (2.2)

provided that the integral exists.

In particular, if µ is the distribution of a real random variable X, we define mn(µ) =

E(Xn) as the n-th moment of X. The latter definition can be extended for the case that µ

is any measure by simply writing

mn(µ) =

∫
R
tn dµ(t).

The sequence of moments of a measure is very useful since it has a lot of information about

µ. Moreover, in several important cases the sequence of moments characterizes the measure.

We know that the sum and product of random variables form new random variables.

This means that the set of random variables form an algebra which is commutative. For a

while, we only consider random variables with all their moments. So, this algebra can be

provided of a linear functional E which satisfies that E(1) = 1 and E(X) ≥ 0 if X ≥ 0. The

notion of non-commutative probability space can be thought as a kind of generalization of

the notion of random variable from a merely algebraic point of view.

Definition 2.1.4. We say that a pair (A, ϕ) is a non-commutative probability space if the

following conditions are held:

1. A is a unital algebra over C,

2. ϕ is a linear functional ϕ : A → C such that ϕ(1A) = 1.
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An element a ∈ A is called non-commutative random variable.

An additional property that can be given to ϕ is that

ϕ(ab) = ϕ(ba), ∀ a, b ∈ A. (2.3)

In this case, we say that ϕ is a trace.

The previous definition can be extended to the case that A is an ∗-algebra which means

that A has an antilineal operation A 3 a 7→ a∗ ∈ A such that (a∗)∗ = a and (ab)∗ = b∗a∗

for any a, b ∈ A. Also, if we consider that ϕ is positive, which means that ϕ(a∗a) ≥ 0 for

any a ∈ A, we say that the pair (A, ϕ) is a ∗-probability space. In this framework, we can

distinguish some special random variables a ∈ A, for instance

1. a is normal if a∗a = aa∗,

2. a is selfadjoint if a = a∗,

3. a is unitary if a∗a = aa∗ = 1A.

In the same framework of ∗-probability spaces, given a family of random variables {ai}i∈I ,
we can define the set of moments of {ai}∞i=1 as{

ϕ
(
aε1i(1)a

ε2
i(2) · · · a

εn
i(n)

)
: n ≥ 1 , (i(1), . . . , i(n)) ∈ In , (ε1, . . . , εn) ∈ {1, ∗}n

}
. (2.4)

We also say that ϕ is faithful if ϕ(a∗a) = 0 implies that a = 0.

Some basic examples of non-commutative probability spaces are given in the following.

Example 2.1.5. 1. Let (Ω,F ,P) be a classical probability space and let A = L∞−(Ω,P)

be the algebra of random variables with finite moments of any order. Indeed, A is a ∗-
algebra since we can consider the ∗-operation as the conjugation of complex functions.

On the other hand, the integration respect to P, E, is a linear functional onA such that

E(1A) = 1 since P is a probability measure. Then (L∞−(Ω,P),E) is a ∗-probability

space.

2. For d ∈ N, we consider Md(C) the algebra of d × d complex matrices along with the

usual multiplication of matrices. We also have a ∗-operation given by the conjugate

transposition. So, Md(C) is a ∗-algebra. Moreover, if we define tr : Md(C)→ C by

tr(a) =
1

d

d∑
i=1

aii ∀ a = (ai,j)
d
i,j=1 ∈Md(C), (2.5)

then (Md(C), tr) is a ∗-probability space.
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3. We can combine the latter two examples in the following one. Let (Ω,F ,P) be

a classical probability space and consider A = L∞−(Ω,P). For d ≥ 1, we con-

sider the ∗-algebra of random matrices Md(A) with the obvious ∗-operation. Then

(Md(A), tr ◦E) is a ∗-probability space. Note that we have the algebra isomorphism

Md(A) ∼= Md(C) ⊗ A. Actually, it is possible to show that if (A, ϕ) and (B, ψ) are

∗-probability spaces, then (A⊗ B, ϕ⊗ ψ) is again a ∗-probability space.

4. Let (H, 〈·, ·〉) be a Hilbert space and B(H) the algebra of bounded linear operators on

H. In this case B(H) is a ∗-algebra where given a ∈ B(H), the adjoint a∗ is uniquely

determined by the relation

〈aε, η〉 = 〈ε, a∗η〉, ∀ ε, η ∈ H. (2.6)

We can define a linear functional on B(H) as follows. We take a vector ε0 ∈ H such

that ‖ε‖ = 1. If we consider the linear functional τ : B(H)→ C defined by

τ(a) := 〈aε0, ε0〉, ∀ a ∈ B(H), (2.7)

then (B(H), τ) is a ∗-probability space. In general, τ does not hold to be faithful.

Another important concept in classical probability is that of the distribution of a random

variable. It is desirable that an analogous concept of distribution in non-commutative

probability contains all the information of the moments of a random variable. In order

to give the corresponding definition, we denote as C〈X,X∗〉 as the unital algebra freely

generated by two non-commutative indeterminate. Actually C〈X,X∗〉 is an ∗-algebra by

defining (X)∗ = X∗.

Definition 2.1.6. Let (A, ϕ) be a non-commutative probability space and a ∈ A a ran-

dom variable. The ∗-distribution of a (in the algebraic sense) is the linear functional

µ : C〈X,X∗〉 → C defined by

µ
(
Xε(1) · · ·Xε(k)

)
= ϕ

(
aε(1) · · · aε(k)

)
, (2.8)

for any k ≥ 0 and ε(1), . . . , ε(k) ∈ {1, ∗}.

This definition can be extended for the case of a family of random variables {a1, . . . , an}
just by considering the functional in the algebra of non-commutative polynomials on 2n

indeterminates given by the mixed moments of a1, . . . , an. This functional is known as the

∗-joint distribution of a1, . . . , an.

In the special case of normal random variables, it is possible to give an alternative

definition of distribution with an analytic flavor.
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Definition 2.1.7. Let (A, ϕ) be a non-commutative probability space and a ∈ A be a

normal random variable. If there exists a probability measure µ with compact support on

C such that ∫
C
zkz̄`dµ(z) = ϕ

(
ak(a∗)`

)
, ∀ k, ` ∈ N ∪ {0}, (2.9)

we say that µ is the ∗-distribution (in the analytic sense) of a.

It is possible to show that if a is selfadjoint, then its possible distribution µ has support

contained in R. On the other hand, if a is a random variable, its analytic distribution

does not necessarily exist. However, it exists for a good number of important examples.

Furthermore, if we add extra analytic structure to the algebra A, we can guarantee the

existence of such analytic distribution. The appropriate framework to accomplish this is

inside of C∗-algebra theory.

We recall that (A, ‖ · ‖) is a C∗-algebra if A is a ∗-algebra, ‖ · ‖ is a norm such that

(A, ‖ · ‖) is a complete normed vector space, and ‖xx∗‖ = ‖x‖2, for any x ∈ A. With this,

we can define a C∗-noncommutative probability space to be a ∗-probability space (A, ϕ) such

that A is a C∗-algebra.

In the framework of C∗-spaces, we have the next theorem whose prove can be found in

Lecture 3 of [14].

Theorem 2.1.8. Let (A, ϕ) be a C∗-noncommutative probability space and a ∈ A be a

normal random variable. Then a has a distribution in the analytic sense.

Remark 2.1.9. Let (A, ϕ) be a C∗-noncommutative probability space and a ∈ A be a

selfadjoint random variable. From the previous theorem, we know that a has analytic

distribution µ whose support is compact and contained in R. A very well known result

states that a compact supported measure is determined by its moments mn. Hence, in the

framework of C∗-spaces, the analytic distribution and the algebraic distribution have the

same information and they determine each other.

2.2 Free Independence

We know present an analogous concept of independence in the framework of non-commutative

probability spaces. This is the called free independence. It was introduced by Dan Voiculescu

in [19] with the objective of solving problems in operator algebras. The adjective free is

because this independence is close to free products of group. We recall that in classical

independence, a family of random variables {Xi}i∈I in a probability space (Ω,F ,P) are
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independent if

P

⋂
j∈J
{Xj ∈ Aj}

 =
∏
j∈J

P(Xj ∈ Aj), ∀ J ⊂ I finite, Aj ∈ B(C), ∀ j ∈ J. (2.10)

Then, if X and Y are independent random variables with all their moments, we have that

E(XnY m) = E(Xn)E(Y m), ∀m,n ≥ 0. (2.11)

From an algebraic point of view, independence of two random variables can be seen as

a “recipe” for computing moments of XnY m from the moments of Xn and Y m. Free

independence is a recipe for computing mixed moments in a non-commutative framework.

Definition 2.2.1. Let (A, ϕ) be a non-commutative probability space and I be a index

set. A family of unital subalgebras {Ai}i∈I of A is called freely independent if

ϕ(a1 · · · ak) = 0

whenever k ∈ N, aj ∈ Ai(j) where i(j) ∈ I for j = 1, . . . , k, φ(aj) = 0 for any j = 1, . . . , k,

and i(1) 6= i(2), i(2) 6= i(3), . . . , i(k − 1) 6= i(k).

We can define that a family of subsets of A, {Xi}i∈I is called freely independent if the

family of unital subalgebras Ai = Alg(Xi) is freely independent, where Alg(X ) denotes the

unital subalgebra generated by X . In particular, a set of random variables {ai}i∈I is freely

independent if the family Ai = Alg(ai) is freely independent. In the context of ∗-spaces, we

say that the random variables {ai}i∈I are ∗-freely independent if the family Ai = Alg(ai, a
∗
i )

is freely independent. Throughout this work, we shall abbreviate that random variables are

freely independent just by saying that the random variables are free. In the same way, we

refer free independence as freeness.

Now we shall see some examples that show how we can use freeness to compute mixed

moments.

Example 2.2.2. Let a, b ∈ A be two free random variables in a non-commutative probabil-

ity space (A, ϕ). In general, we do not have that ϕ(a) = 0, but by linearity ϕ(a−ϕ(a)1A) =

0 = ϕ(b− ϕ(b)1A). By freeness, we get that

0 = ϕ ((a− ϕ(a)1A)(b− ϕ(b)1A))

= ϕ (ab− ϕ(a)b− ϕ(b)a+ ϕ(a)ϕ(b)1A)

= ϕ(ab)− ϕ(a)ϕ(b).
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It follows that ϕ(ab) = ϕ(a)ϕ(b) whenever a, b are free. Notice that this coincides with

the classical case: if X and Y are independent classical random variables, then E(XY ) =

E(X)E(Y ).

Example 2.2.3. Let a1, a2, b1, b2 ∈ A random variables in a non-commutative probability

space (A, ϕ) such that {a1, a2} and {b1, b2} are free. Using the idea of the above example,

we get that

ϕ ((a1 − ϕ(a1)1A)(b1 − ϕ(b1)1A)(a2 − ϕ(a2)1A)(b2 − ϕ(b2)1A)) = 0

implies that

ϕ(a1b1a2b2) = ϕ(a1a2)ϕ(b1)ϕ(b2) + ϕ(a1)ϕ(a2)ϕ(b1b2)− ϕ(a1)ϕ(a2)ϕ(b1)ϕ(b2).

If b1 = b and b2 = 1 then

ϕ(a1ba2) = ϕ(a1a2)ϕ(b)ϕ(1A) +ϕ(a1)ϕ(a2)ϕ(b · 1A)−ϕ(a1)ϕ(a2)ϕ(b)ϕ(1A) = ϕ(a1a2)ϕ(b),

which also coincides with the classical case. However, taking a = a1 = a2 and b = b1 = b2,

if a and b are free then

ϕ(abab) = ϕ(a2)ϕ(b)2 + ϕ(a)2ϕ(b2)− ϕ(a)2ϕ(b2).

In this case the latter expression differs from the classical one: if X and Y are independent

classical random variables, then E(XYXY ) = E(X2)E(Y 2). This shows that free indepen-

dence is a different rule from classical independence for computing mixed moments.

For the next example, we need the following definition that, as we shall see in the next

chapter, it is related with a very important class of random matrices.

Definition 2.2.4. Let (A, ϕ) a ∗-probability space and u ∈ A. We say that u is a Haar

unitary if u∗u = 1A = uu∗ and ϕ(um) = δ0,m for m ∈ Z.

Example 2.2.5. Let a, b, u, v ∈ A random variables in a non-commutative probability

space (A, ϕ) such that {u, u∗}, {v, v∗} and {a, b} are free. We see that uau∗ and vbv∗ are

free. According to the definition, we have to prove that

ϕ (p1(uau∗)q1(vbv∗) · · · pr(uau∗)qr(vbv∗)) = 0 (2.12)

whenever pi, qi are polynomials such that ϕ(pi(uau
∗)) = 0 = ϕ(qi(vbv

∗)) for each 1 ≤ i ≤ r.
Indeed, we have to consider the other three cases when the argument of ϕ in (2.12) starts
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with q1(vbv∗) and finishes with pr(uau
∗) or qr(vbv

∗), but they are treated in an analogous

way. Since uu∗ = 1A = u∗u and vv∗ = 1A = v∗v the above example tells us that

ϕ(pi(uau
∗)) = ϕ(upi(a)u∗) = ϕ(uu∗)ϕ(pi(a)) = ϕ(pi(a))

and in the same way ϕ(qi(vbv
∗)) = ϕ(qi(b)). Hence, if ϕ(pi(uau

∗)) = 0 = ϕ(qi(vbv
∗)) then

ϕ(pi(a)) = 0 = ϕ(qi(b)) for each 1 ≤ i ≤ r. So we have

ϕ (p1(uau∗)q1(vbv∗) · · · pr(uau∗)qr(vbv∗)) = ϕ (up1(a)u∗vq1(b)q1(b)v∗ · · ·upr(a)u∗vqr(b)v
∗) = 0

since we also have that ϕ(u) = ϕ(u∗) = 0 = ϕ(v) = ϕ(v∗) and {u, u∗}, {v, v∗}, {a, b} are

free.

With the idea of the previous examples, it can be shown the next proposition via in-

duction. The proposition states that it is possible to compute the joint distribution of free

random variables from the moments of each random variable.

Proposition 2.2.6. Let (A, ϕ) be a non-commutative probability space and consider a fam-

ily of unital subalgebras of A, {Ai}i∈I which are free. If B = Alg({Ai : i ∈ I}), then ϕ|B
is uniquely determined by {ϕ|Ai}i∈I .

Remark 2.2.7. 1. It makes sense to ask for more analogous aspects of classical proba-

bility in the framework of non-commutative probability spaces along with the notion

of free independence. Free Probability Theory has many interesting objects motivated

by looking for analogous objects. For instance, we can have a Free Central Limit The-

orem, Free Processes, Free Infinitely Divisible Distributions, Free Brownian Motion,

and Free Stochastic Integrals.

2. We can also ask for an analogous theorem of Kolmogorov consistency theorem. More

precisely, in the case of classical random variables, we can assure the existence of

independent random variables with a given distribution. Can we translate this fact

in the framework of free random variables? In other words, we are asking for the

existence of the free product of non-commutative probability spaces. The answer to

this question is affirmative. The interested reader can check Lectures 6 and 7 of [14]

for a proof of this fact.

3. Free Probability Theory has resulted to be a very rich field with many connections

with other branches of mathematics. One of its main applications is in Random Matrix

Theory. In the next chapter, we shall present some results which free independence

appears in several models of random matrices when the dimension of the matrices

goes to infinity.
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2.3 Free Central Limit Theorem

It is not difficult to note that the definition of free independence does not give a very explicit

rule for computing mixed moments compared with the classical rule of independence. For

example, we know that if a and b are free random variables then the distribution of a + b

is determined by the moments {ϕ(am), ϕ(bn) : n,m ≥ 0}. But computing ϕ((a + b)k) for

each k ≥ 1 directly by the definition could be tedious. In this section we shall present some

quantities that have the same information that the moments but describe the relation of

freeness more easily than the moments. These quantities will allow us to give a proof of

a version of the Central Limit Theorem where we consider a sequence of non-commutative

random variables that are freely independent.

Definition 2.3.1. Let n ∈ N.

1. A partition π of {1, . . . , n} is a collection of subsets V1, . . . , Vk of {1, . . . , n} such that

Vi ∩ Vj = ∅ for i 6= j and
⋃k
i=1 Vi = {1, . . . , n}. The subsets Vi are called the blocks of

π. If a, b are in the same block of π, then we write a ∼π b.

2. We say that π of {1, . . . , n} is a non-crossing partition if π = {V1, . . . , Vk} is a partition

of {1, . . . , n} such that for any a < b < c < d with a ∼π c and b ∼π d, we have that

b ∼π d. The set of non-crossing partitions of {1, . . . , n} will be denoted as NC(n).

The set of non-crossing partitions can by provided of a structure of partial ordered set,

by defining that for two non-crossing partitions π, σ ∈ NC(n), π ≤ σ if only if the blocks of

π are contained in the blocks of σ. Also, it is a well known fact that |NC(n)| = 1
n+1

(
2n
n

)
for

n ≥ 1. This number is known as the n-th Catalan number. This quantities appear in many

combinatorial situations. We shall see later that they also have an important occurrence in

the Free Central Limit Theorem.

Non-crossing partitions have a fundamental role in the combinatorics of Free Probability.

The free cumulants are defined through them as follows:

Definition 2.3.2. Let (A, ϕ) be a non-commutative probability space. The free cumulants

of (A, ϕ) is the family {κn : An → C}n≥1 of multilinear functionals defined by the equation

ϕ(a1 · · · an) =
∑

π∈NC(n)

κπ(a1, . . . , an) (2.13)

where

κπ(a1, . . . , an) =
∏
V ∈π

κ|V |(a1, . . . , an|V ), a1, . . . , an ∈ A, (2.14)

and κ|V |(a1, . . . , an|V ) = κr(ai1 , . . . , air) if V = {i1, . . . , ir} and i1 < · · · < ir.
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Remark 2.3.3. 1. According to the definition, for the case n = 1 we have that the first

cumulant is κ1(a1) = ϕ(a1). For the case n = 2, we get that

ϕ(a1a2) = κ{{1,2}}(a1, a2) + κ{{1},{2}}(a1, a2) = κ2(a1, a2) + κ1(a1)κ1(a2)

and so κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2).

2. The existence of such of family {κn}n≥1 in the Definition 2.3.2 is provided by the

general Möbius inversion theory in the poset of non-crossing partitions. Actually, it

turns out that

κn(a1, . . . , an) =
∑

π∈NC(n)

ϕπ(a1, . . . , an)µn(π, 1n), (2.15)

for any a1, . . . , an ∈ A, where µn is the Möbius function on NC(n) and ϕπ is defined

in the same fashion that κπ just by replacing κ by ϕn(a1, . . . , an) = ϕ(a1 · · · an). It

can be consulted the Lectures 9 and 10 of [14] for a detailed proof of this fact. The

Equations (2.13) and (2.15) are known as Moment - Cumulant formulas.

We enunciate the most important theorem in the combinatorics of Free Probability. This

theorem states that free independence can be easily described in terms of free cumulants.

The proof can be found in Lecture 11 of [14]

Theorem 2.3.4. Let (A, ϕ) be a non-commutative probability space and let {κn}n≥1 be the

corresponding free cumulants. We consider {Ai}i∈I a family of unital subalgebras of A.

The following statements are equivalent:

1. {Ai}i∈I are free.

2. For any n ≥ 2 and any aj ∈ Ai(j) with i(j) ∈ I for j = 1, . . . , n, we have that

κn(a1, . . . , an) = 0 whenever there exist 1 ≤ ` < k ≤ n such that i(`) 6= i(k).

The statement 2 in Theorem 2.3.4 is called the mixed vanishing cumulants condition.

Theorem 2.3.4 has many implications in Free Probability Theory. The first implication

that we can consider is related two sum of free random variables. If a is a random variable

in (A, ϕ), we denote

κn(a) = κn(a, . . . , a).

The sequence of complex numbers {κn(a)}n≥1 is called the sequence of free cumulants of a.

According to the moment - cumulant formulas, the sequence of free cumulants of a carries

the same information that the moment sequence of a. But unlike it, free cumulants behave

in a nicer way when we are dealing with sums of free random variables. More precisely, we
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have the next proposition which follows from Theorem 2.3.4 and from multilinearity of free

cumulants.

Proposition 2.3.5. Let a and b non-commutative random variables in a non-commutative

probability space (A, ϕ) with corresponding free cumulants {κn}n≥1. For any n ≥ 1, it holds

that

κn(a+ b) = κn(a) + κn(b). (2.16)

With the latter proposition, we are able to give a proof of the Free Central Limit

Theorem. In order to do that, we introduce the notion of convergence in distribution in the

framework of non-commutative probability spaces.

Definition 2.3.6. Let {(An, ϕn)}n≥1 and (A, ϕ) be non-commutative probability spaces.

For a index set I, consider the random variables ai(n) ∈ An and ai ∈ A for each i ∈ I, n ∈ N.

We say that the family {ai(n)}i∈I converges in distribution to {ai}i∈I if for any m ∈ N and

i1, . . . , im ∈ I we have that

lim
n→∞

ϕn (ai1(n) · · · aim(n)) = ϕ (ai1 · · · aim) . (2.17)

The convergence in distribution is denoted by

(ai(n))i∈I
d→ (ai)i∈I .

In the framework of ∗-probability spaces, we say that {ai(n)}i∈I converges in ∗-distribution

if (ai(n), a∗i (n))i∈I
d→ (ai, a

∗
i )i∈I . In general, we can just say convergence in distribution

instead of ∗-distribution when the context is clear.

Now we introduce a special random variable which plays a very important role in Free

Probability Theory.

Definition 2.3.7. Let (A, ϕ) be a non-commutative probability space, x ∈ A a selfadjoint

random variable and r be a positive real number. We say that x is a semicircular element

of radius r if the moments of x are given by

ϕ(xn) =

{
( r2)2kCk if n = 2k,

0 if n is odd,
(2.18)

where Ck denotes the k-th Catalan number. If r = 2, we say that x is a standard semicircular

element.

It can be showed that the probability measure given by dµs,t(t) = 2
πr2

√
r2 − t21[−r,r](t)

has the moments described in (2.18). The distribution µs,r is called semicircle distribution

of radius r.
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The Free Central Limit Theorem can be stated in the following way.

Theorem 2.3.8 (Free Central Limit Theorem). Let (A, ϕ) be a non-commutative proba-

bility space, and {ai}i∈N be a sequence of free selfadjoint random variables with the same

distribution. Assume that for every i ∈ N we have that ϕ(ai) = 0 and ϕ(a2
i ) = 1. Then

a1 + · · ·+ an√
n

d→ s, (2.19)

where s is a standard semicircular element.

Proof. From the moment - cumulant formulas, we have that the convergence of moments is

equivalent to convergence of free cumulants. Then from multilinearity and Theorem 2.3.4

we have that

κm

(
a1 + · · ·+ an√

n

)
=

1

n
m
2

n∑
i=1

κm(ai)

= n−
m
2

+1κm(a1)

−−−→
n→∞

{
0 if m 6= 2,

1 if m = 2,

Let s be the limiting random variable. Hence the only non-zero limiting free cumulant is

κ2(s) = 1. Using the moment - cumulant formula, we get that if n is odd then mn(s) = 0.

Otherwise, if n = 2k then

mn(s) =
∑

π∈NC2k(k)

1 = |NC2(2k)|,

where NC2(2k) denotes the set of non-crossing pairings of {1, . . . , 2k}. It is possible to

establish a bijection between NC2(2k) and NC(k), and hence m2k(s) = Ck. We conclude

that s is a standard semicircular element. �

Remark 2.3.9. Let (A, ϕ) be a C∗-noncommutative probability space and {ai}i∈N be

a sequence of random variables in A which satisfies the assumptions of Theorem 2.3.8.

Consider the selfadjoint element sn = (a1 + · · · + an)/
√
n and let µn be the distribution

of sn in the analytic sense given by Theorem 2.1.8. By the Free Central Limit Theorem,

we have that the moments of µn converges to the moments of the standard semicircle

distribution µs,2. Since this distribution is compactly supported in [−2, 2], the semicircle

distribution is uniquely determined by its moments. For a known result in measure theory,

we can conclude then that Theorem 2.3.8 implies that µn weakly converges to the standard

semicircle distribution.



Chapter 3

Free Probability and Random

Matrices

In this chapter, we present some of the most relevant relations between Free Probability

and Random Matrix Theory, such as Wigner’s semicircle law and asymptotic freeness of

Wigner matrices and deterministic matrices. The presentation of this chapter is based in

Chapters 1 and 4 of the work of J. Mingo and R. Speicher [12].

3.1 Random Matrices Ensembles

Definition 3.1.1. Let (Ω,F ,P) be a classical probability space and n,m ∈ N. A measurable

function X : (Ω,F ,P)→ (Mn×m(C),B(Mn×m(C))) is called a random matrix.

Definition 3.1.2. Let X be an n × n random matrix on a classical probability space

(Ω,F ,P) and λ1, . . . , λn its eigenvalues. We called the averaged spectral distribution to the

probability measure

µX =
1

n

n∑
i=1

∫
Ω
δλi(ω) dP(ω), (3.1)

where δa denotes the Dirac measure on a.

Remark 3.1.3. We note that in the context of non-commutative probability spaces, the

analytic distribution of a normal random variable X in (Mn(L∞−(Ω,P)),E⊗ tr) coincides

with its averaged spectral distribution. Indeed, thanks to the finite dimensional spectral

theorem, we can write X = UDU∗, where U is unitary and D is the diagonal matrix with

29
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the eigenvalues of X. Then for any r, s ≥ 0:

E(tr(Xr(X∗)s)) = E(tr(Dr(D∗)s))

= E

(
1

n

n∑
i=1

λriλi
s

)

=

∫
C
zrzs dµX(z).

Hence µX is the analytic distribution of X in the sense of the Definition 2.1.7.

A sequence {Xn}∞n=1 where for each n ∈ N, Xn is an n × n random matrix is called

random matrices ensemble.

Example 3.1.4 (Wigner Ensemble). Consider {Xn}n a random matrices ensemble where

for each n ≥ 1, Xn = (xij)
n
i,j=1 is such that Xn is Hermitian and {xij}i≥j are independent

identically distributed random variables with mean zero and variance 1/n. The ensemble

{Xn}∞n=1 is called Wigner ensemble.

We recall that Z is a standard complex Gaussian random variable if Z = (X + iY )/
√

2,

where X and Y are independent real Gaussian random variable with mean 0 and variance

1. The following ensemble is one of the most important in Random Matrix Theory.

Definition 3.1.5 (Gaussian Unitary Ensemble). A Gaussian Unitary Ensemble (GUE)

{Zn}∞n=1 is a random matrix ensemble such that if Zn = (zij)
n
i,j=1, then Zn is Hermitian,

{zij}i≤j are independent random variables,
√
nzij is a standard complex Guassian random

variable for 1 ≤ i < j ≤ n and
√
nzii is a standard real Guassian random variable for

1 ≤ i ≤ n.

The adjective “unitary” in the above definition is because of UZnU
∗ has the same

distribution than Zn, where Zn is a GUE and U is an n×n unitary matrix. The latter can

be easily proved by computing the Fourier transform of Zn.

Another very important example of random matrices related with the Gaussian variables

is the Wishart ensemble.

Example 3.1.6 (Wishart Ensemble). For each n ∈ N, let Xn be an n×m random matrix

whose entries are independent standard complex Guassian random variable. Consider the

random matrix

Yn =
1

n
Y Y ∗.

The sequence {Yn}n is called Wishart ensemble.
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Now we introduce another example of random matrix. For this, we recall that the unitary

group U(n) is the group of n×n matrices U with complex entries such that U∗U = UU∗ = I.

It is known that U(n) is a compact group, and then there exists a probability measure µ on

U(n) with the property that it is invariant under translations. This measure is called the

Haar measure on U(n) and this is unique.

Definition 3.1.7. Let n ∈ N. We say that an n× n random matrix Un is a Haar unitary

random matrix if the distribution of Un is the Haar measure on U(n).

Remark 3.1.8. Since we have not given an explicit formula for the Haar distribution,

we would like to obtain a way to simulate Haar unitary random matrices for numerical

experiments. A way to obtain it is to consider Zn an n×n random matrix whose entries are

independent standard complex Gaussian random variables and orthogonalize it by applying

the Gram-Schmidt algorithm. This new matrix is distributed according to the Haar measure

on U(n).

Remark 3.1.9. Let n ∈ N and let U be an n× n Haar unitary random matrix. Take r a

non-zero integer and λ ∈ C such that |λ| = 1. Then U r and λrU r are also Haar unitaries.

Then tr(U r) = tr(λrU r) = λr tr(U r) which implies that tr(U r) = 0 for r 6= 0. In the

framework of non-commutative probability spaces, we have that U is a non-commutative

random variable in the space (Mn(L∞−(Ω,P)),E⊗tr) and its algebraic distribution is given

by E(tr(U r)) = δ0,r. Hence, U is a Haar unitary in the sense of the Definition 2.2.4.

3.2 Wigner’s Semicircle Law

One of the most interesting question in Random Matrix Theory is if we can say something

about the limit as n → ∞ of the averaged spectral distribution of a random matrices

ensemble {An}∞n=1. The next result due to Wigner gives an answer in the case of convergence

in distribution of GUE random matrices. This theorem was the key in the work of Voiculescu

[20] to find the connection between Free Probability Theory and Random Matrix Theory.

Theorem 3.2.1 (Wigner’s Semicircle Law). Let {Zn}∞n=1 be a GUE. Then

lim
n→∞

E
(

tr(Zkn)
)

=

{
Ck/2 if k is even,

0 if k is odd.
=

1

2π

∫ 2

−2
tk
√

4− t2 dt (3.2)

We shall give a short sketch of the proof. For n ≥ 1, consider Zn = (zij)
n
i,j=1 be a GUE.

We want to compute the expected value of the normalized trace of Zkn. According to the
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multiplication of matrices, we have that

E((tr(Zkn)) =
n∑

i1,...,ik=1

E (zi1i2zi2i3 · · · ziki1) . (3.3)

In order to compute the expectation of each term in the above sum, we use the next identity

known as the Wick formula: if X = (X1, . . . , Xk) is a Gaussian vector then

E(Xi1 · · ·Xik) =
∑

π∈P2(k)

Eπ(Xi1 , . . . , ik), (3.4)

where P2(k) denotes the set of pair partitions of {1, . . . , k} and Eπ is defined in a similar

fashion that (2.14). This formula can be extended for the complex Gaussian case because

of multilinearity. According to (3.4), when k is odd every term in the sum of (3.3) is equal

to 0 and so E(tr(Zkn)) = 0. In the case that k is even, doing a combinatorial analysis based

in the covariances about which pair partitions π have a non-zero contribution to (3.3), it is

possible to show that

E(tr(Zkn)) =
∑

π∈P2(k)

N `(γkπ)− k
2
−1, (3.5)

where π is consider as a permutation in Sk which disjoint cycles are precisely the blocks of

π, γk = (1, 2, . . . , k) and `(σ) denotes the number of disjoint cycles of σ. The next step is

to prove that for any pair partition π ∈ P2(2k), we have that `(γ2kπ) ≤ k + 1 where the

equality holds when π is non-crossing. Finally, taking the limit in (3.5) we get that

lim
n→∞

E(tr(Z2k
n )) =

∑
π∈NC2(2k)

1 = |NC2(2k)| = Ck, (3.6)

which finishes the proof.

The previous theorem gives convergence of moments. In the language of non-commutative

probability spaces, we have that {Zn}∞n=1 converges in distribution to s, in the sense of Def-

inition 2.3.6. On the other hand, since the semicircle distribution has compact support,

it is determined by its moments. This fact along with the convergence of moments allow

to conclude that the averaged spectral distribution µXn weakly converges to the standard

semicircle distribution µs.

Remark 3.2.2. The Wigner’s semicircle law establish the convergence to the semicircle

distribution by proving the convergence of moments respect to E⊗tr. Now, we are interested

in analyzing the almost sure convergence the random variable tr(Zkn). Given that E(tr(Zkn))

converges to ϕ(sk), it can be proved that tr(Zkn) almost surely converges to ϕ(sk) by an

usual argument of concentration of measures. This arguments can be stated as follows.
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Using similar combinatorial ideas as in the proof of Theorem 3.2.1, we can show that

Var(tr(Zkn)) ≤ C
n2 , for some positive constant C. On the other hand, the almost sure

convergence can be proved by establishing that for any ε > 0, we have that

P
(

lim sup
n→N

{
| tr(Zkn)− E(tr(Zkn))| ≥ ε

})
= 0.

Since we have independence of the random variables, by Borel-Cantelli lemma the above

equation can be proved if we show that

∞∑
n=1

P
(
| tr(Zkn)− E(tr(Zkn))| ≥ ε

)
<∞.

But using Chevyshev’s inequality and the bound for the variance, we have that

P
(
| tr(Zkn)− E(tr(Zkn))| ≥ ε

)
≤ 1

ε2
Var(tr(Zkn)) ≤ C

ε2n2
,

which allows to prove the almost sure convergence.

The next pictures show how this different two types of convergence behave in the case

of Gaussian unitary ensembles.

Figure 3.1: Figure from the left is the histogram of the eigenvalues of 1000 realization of
30× 30 GUE random matrices. Figure of the middle is the histogram of the eigenvalues of
one realization of a 30 × 30 GUE random matrix. Figure from the right is the histogram
of the eigenvalues of a 1000 × 1000 GUE random matrix. In the three cases, the red line
represents the density function of the semicircular distribution.

Remark 3.2.3. With a little bit more effort and following similar ideas of the proof of

the Wigner’s semicircle law, it is possible to show that if Z1, . . . , Zm are n× n independent
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GUE random matrices, then

lim
n→∞

E
(
tr
(
(Zr1i1 − cr1I)(Zr2i2 − cr2I) · · · (Zrsis − crsI)

))
= 0, (3.7)

for any s ≥ 1, r1, . . . , rs are positive integers, i1, . . . , is ∈ {1, . . . ,m} such that i1 6= i2, i2 6=
i3, . . . , is−1 6= is, and cm = limn→∞ E(tr(Zmn )). We note that the above equation is quite

similar to the definition of freeness. We shall address this issue in the following section.

3.3 Asymptotic Freeness of Random Matrices

Definition 3.3.1 (Asymptotic freeness). Let {(An, ϕn)}∞n=1 be non-commutative proba-

bility spaces and let I be an index set. For each n ∈ N, let {ai(n)}i∈I ⊂ An. We say

that the random variables {ai(n)}i∈I are asymptotically freely independent if there exist

a non-commutative probability space (A, ϕ) and random variables {ai}i∈I ⊂ A such that

{ai(n)}i∈I converges in distribution to {ai}i∈I and {ai}i∈I are freely independent.

For the case of asymptotic freeness of random matrices, we just consider the non-

commutative probability space An = (L∞−(Ωn,Pn),E ⊗ tr) in the above definition. The

first example of asymptotic freeness of random matrices arises from Remark 3.2.3, which

says that independent Gaussian unitary ensembles are asymptotically free.

In the context of random matrices, we can consider a strong notion of asymptotic free-

ness. This notion arises from studying the almost sure convergence as we see in Remark

3.2.2. The corresponding definition can be stated in the following way.

Definition 3.3.2 (Almost sure asymptotic freeness of random matrices). Let {An}∞n=1 and

{Bn}∞n=1 be two sequences such that for each n ∈ N, An and Bn are n×n random matrices

defined in the same classical probability space (Ωn,Fn,Pn). Consider Ω =
∏∞
n=1 Ωn the

product space and P =
∏∞
n=1 Pn the product measure on Ω. We say that An and Bn are

almost surely asymptotically freely independent if there exist a non-commutative probability

space (A, ϕ), two random variables a, b ∈ A which are free and a subset Ω′ ⊂ Ω such that

P(Ω′) = 1 and {An(ω), Bn(ω)} ⊂ (Mn(C), tr) converges in distribution to {a, b}, for each

ω ∈ Ω′.

Our first example of asymptotic freeness can be stated as follows.

Theorem 3.3.3 (Asymptotic freeness of GUE). Let Z1(n), . . . , Zp(n) be independent n×n
GUE random matrices. Then

Z1(n), . . . , Zp(n)
d→ s1, . . . , sp as n→∞,
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where si is a standard semicircular element for each 1 ≤ i ≤ p and s1, . . . , sp are free.

The convergence in distribution also holds almost surely. Then Z1(n), . . . , Zp(n) are almost

surely asymptotically free.

It is of interest to analyze if there is an asymptotic relation between GUE random

matrices and deterministic matrices. Namely, let {Dn}n≥1 be a sequence of deterministic

matrices where Dn ∈Mn(C). Assume that there exist a non-commutative probability space

(A, ϕ) and d ∈ A such that

lim
n→∞

tr(Dk
n) = ϕ(dk), ∀ k ≥ 1,

i.e., Dn
d→ d as n → ∞. Consider a sequence {Zn}∞n=1 of GUE random matrices which

converges to distribution to a semicircular element s thanks to the Wigner’s theorem. We

can ask about the convergence in distribution of (Zn, Dn) as n → ∞, i.e., we have to

investigate the convergence of the mixed moments

E(tr(Dr1
n ZnD

r2
n · · ·Drm

n Zn)) (3.8)

for each m ≥ 1 and r1, . . . , rm non-negative integers. We can use again the Wick formula for

the mixed moments of the entries of Zn. For instance, if Zn = (zij)
n
i,j=1, Drk

n = (d
(k)
ij )ni,j=1

and recalling that E(zijzk`) = δi`δjk
1
n then

E(tr(Dr1
n ZnD

r2
n · · ·Drm

n Zn)) =
1

n

n∑
i1,j1,...,im,jm=1

E
(
d

(1)
j1i1

zi1j2d
(2)
j2i2

zi2j3 · · · d
(m)
jmim

zimj1

)
=

1

n

n∑
i1,j1,...,im,jm=1

E (zi1j2zi2j3 · · · zimj1) d
(1)
j1i1

d
(2)
j2i2
· · · d(m)

jmim

= n−
m
2
−1

∑
π∈P2(m)

n∑
i1,j1,...,im,jm=1

m∏
r=1

δirjγπ(r)d
(1)
j1i1

d
(2)
j2i2
· · · d(m)

jmim

= n−
m
2
−1

∑
π∈P2(m)

n∑
j1,...,jm=1

d
(1)
j1γπ(1)d

(2)
j2γπ(2) · · · d

(m)
jmγπ(m)

where γ is the long cycle in the symmetric group (1, . . . ,m) ∈ Sm and we are regarding

π ∈ P2(m) as a permutation in Sm formed as a product of transpositions (the blocks

of π). Extending the definition of tr, we can consider trσ for σ ∈ Sm as follows: if

σ = c1 · · · c`(σ) is the decomposition into disjoint cycles of σ, and cj = (i1, . . . , ir(j)) then
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trci(Di1 , Di2 , . . . , Dir(j)) = tr(Di1Di2 · · ·Dir(j)) and

trσ(D1, . . . , Dm) =

`(σ)∏
j=1

trcj (Di1 , . . . , Dir(j)). (3.9)

One can show that for σ ∈ Sm and Ak = (a
(k)
ij )ni,j=1, we have that

trσ(A1, . . . , Am) = n−`(σ)
n∑

i1,...,im=1

a
(1)
i1iσ(1)

a
(2)
i2iσ(2)

· · · a(m)
imiσ(m)

. (3.10)

Using that `(γπ) ≤ m
2 + 1 where the equality holds when π is non-crossing, we get that

E(tr(Dr1
n ZnD

r2
n · · ·Drm

n Zn)) =
∑

π∈P2(k)

n−`(γπ)−1−m
2 trγπ(Dr1

n , D
r2
n , . . . , D

rm
n )

−−−→
n→∞

∑
π∈NC2(m)

ϕγπ(dr1 , dr2 , . . . , drm).

It is not difficult to see that the last sum correspond to the mixed moments of the product of

free random variables (see for instance Lecture 14 of [14]). Hence this allows to conclude that

s and d are free. One can consider the case several GUE random matrices and deterministic

matrices and work in a similar fashion to get the following theorem due to Voiculescu.

Theorem 3.3.4 (Asymptotic freeness of GUE random matrices and deterministic matri-

ces). Let Z1(n), . . . , Zp(n) be independent n×n GUE random matrices and D1(n), . . . , Dq(n)

be deterministic n× n matrices such that

D1(n), . . . , Dq(n)
d→ d1, . . . , dq as n→∞.

Then it holds that

Z1(n), . . . , Zp(n), D1(n), . . . , Dq(n)
d→ s1, . . . , sp, d1, . . . , dq as n→∞,

where si is a standard semicircular element for each 1 ≤ i ≤ p and s1, . . . , sp, {d1, . . . , dq}
are free. The convergence in distribution also holds almost surely. Then Z1(n), . . . , Zp(n),

{D1(n), . . . , Dq(n)} are almost surely asymptotically free.

We note that we can also wonder what happens in the case of that the matrices Di(n)

are allowed to be random matrices. We can give an extension of the above theorem in

the case that Di(n) and Zi(n) are independent and the Di(n)’s have almost sure limit

distribution. The proof of the theorem will result by conditioning on the Di(n)’s and using
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the deterministic version.

Corollary 3.3.5. Let Z1(n), . . . , Zp(n) be independent n × n GUE random matrices and

D1(n), . . . , Dq(n) be n× n random matrices such that

D1(n)(ω), . . . , Dq(n)(ω)
d→ d1, . . . , dq as n→∞

for almost all ω. Assume that Z1(n), . . . , Zp(n), {D1(n), . . . , Dq(n)} are independent. Then

it holds that

Z1(n)(ω), . . . , Zp(n)(ω), D1(n)(ω), . . . , Dq(n)(ω)
d→ s1, . . . , sp, d1, . . . , dq as n→∞

almost surely where si is a standard semicircular element for each 1 ≤ i ≤ p, s1, . . . , sp,

{d1, . . . , dq} are free and then Z1(n), . . . , Zp(n), {D1(n), . . . , Dq(n)} are almost surely asymp-

totically free.

Now we consider a different example of asymptotic freeness which concerns to Haar uni-

tary random matrices. For each n ∈ N, we note that if Un is a Haar unitary random matrix,

then Un has the same distribution that a Haar unitary element u in a non-commutative

probability space (A, ϕ). In particular we can write Un
d→ u as n→∞.

As in the latter example of asymptotic freeness, we are interested in the limiting distri-

bution of Haar unitary random matrices and deterministic matrices D1(n), . . . , Dq(n) which

converges in distribution to d1, . . . , dq in some non-commutative probability space. We can

start the analysis by considering the term E(tr(Dr1U ε1 · · ·DrmU εm)) and writing it as a sum

due to the trace as we saw in the case of GUE and deterministic matrices. However, the

fact of independence and Gaussian distribution of the entries of the GUE led us to consider

the Wick formula (3.4) in order to compute the mixed moments in the latter example. For

the case of Haar unitary random matrices, we have an analogous, although complicated,

formula called the Weingarten formula which was introduced by Collins in [7].

Definition 3.3.6. For each n ∈ N, we called the Weingarten function Wg(·, n) to the linear

function on C[Sm] for m ≤ n defined in the canonical basis by

Wg(σ, n) = E
(
u11 · · ·ummu1σ(1) · · ·umσ(m)

)
, ∀σ ∈ Sm, (3.11)

where U = (uij)
n
i,j=1 is an n× n Haar unitary random matrix.

With the above definition, we can state the Weingarten formula in the next lemma.

Lemma 3.3.7. Let U = (uij)
n
i,j=1 be an n × n Haar unitary random matrix. Then for
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n ≤ m and any 1 ≤ i(r), i(r), j(r), j(r) ≤ n with 1 ≤ r ≤ m, we have that

E
(
ui(1)j(1) · · ·ui(m)j(m)ui′(1)j′(1) · · ·ui′(m)j′(m)

)
=

∑
σ,τ∈Sm

n∏
r=1

δi(r)i′(σ(r))δj(r)j′(τ(r))Wg(τσ−1, n).

(3.12)

We also have a result about the asymptotic behavior of the Weingarten function as

n→∞. This result can be found in [9].

Lemma 3.3.8. Let n ∈ N. For any σ ∈ Sm we have that

Wg(σ, n) = n−2n+`(σ)

`(σ)∏
i=1

(−1)m−`(ci)Cm−`(ci) +O(n−2)

 (3.13)

where σ = c1 · · · c`(σ) is the decomposition into disjoint cycles of σ, `(σ) is the number of

disjoint cycles which appear in such decomposition, and Ck is the k-th Catalan number.

The Weingarten function will be very useful in Chapter 5 when we are studying the

convergence of random matrices which are asymptotic cyclically monotone independent.

The above lemma takes an important role in the proof of the following theorem also due

to Voiculescu. We refer to the Lecture 23 [14] and Chapter 4 of [12].

Theorem 3.3.9 (Asymptotic freeness of Haar unitary and deterministic matrices). Let

U1(n), . . . , Up(n) be independent n×n Haar unitary random matrices and D1(n), . . . , Dq(n)

be deterministic n× n matrices such that

D1(n), . . . , Dq(n)
d→ d1, . . . , dq as n→∞.

Then it holds that

U1(n), U∗1 (n), . . . , Up(n), U∗p (n), D1(n), . . . , Dq(n)
d→ u1, u

∗
1, . . . , up, u

∗
p, d1, . . . , dq as n→∞,

where ui is a Haar unitary element for each 1 ≤ i ≤ p and {u1, u
∗
1}, . . . , {up, u∗p}, {d1, . . . , dq}

are free. The convergence in distribution holds also almost surely. Then {U1(n), U∗1 (n)}, . . . ,
{Up(n), U∗p (n)}, {D1(n), . . . , Dq(n)} are almost surely asymptotically free.

Remark 3.3.10. As well as Corollary 3.3.5, we can generalize Theorem 3.3.9 to the case

that the matrices Di’s are random matrices independent from the Haar unitariy random

matrices and such that the Di’s have an almost sure limit distribution. The proof of this

almost sure asymptotic freeness relies to the fact that it is possible to give a bound of order

n−2 to the covariances of traces. For a discussion of this, the reader can check Chapter 5

of [12].
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Combining Example 2.2.5 and Theorem 3.3.9, we get that if {An}∞n=1 and {Bn}∞n=1

are two sequences of deterministic matrices such that (An, Bn)
d→ (a, b) and {Un}∞n=1 is

a sequence of n × n Haar unitary random matrices, An and UnBnU
∗
n are asymptotically

free. This establishes that two deterministic matrices are asymptotically free when one of

them is randomly rotated. Actually, we only need that An
d→ a and Bn

d→ b instead of the

assumption of joint convergence. A proof of this fact appears in Lecture 23 of [14].

Figure 3.2: Histogram of the eigenvalues of An + UnBnU
∗
n, where An and Bn are n × n

deterministic diagonal matrices with n/2 1’s and n/2 −1’s in the diagonal, and Un is a
Haar unitary random matrix, with n = 1000. The limiting distribution corresponds to
the distribution of the sum of two free random variables with the Bernoulli distribution
(δ1 + δ−1)/2. The red line is the density of the limiting distribution which can be effectively
computed by analytic methods. We refer to Lecture 12 of [14] for the details.

In particular, by using Example 2.2.5, we have the next corollary which will be useful

in the following chapters.

Corollary 3.3.11. Let U1(n), . . . , Up(n) be independent n×n Haar unitary random matrices

and D1(n), . . . , Dp(n) be n×n deterministic matrices such that (D1(n), . . . , Dq(n)) converges

in distribution. Then U1(n)D1(n)U∗1 (n), . . . , Up(n)Dp(n)U∗p (n) are asymptotically free.

To finish this chapter, we state the general version of asymptotic freeness for Wigner

ensembles and deterministic matrices. A combinatorial proof based in sums given in terms

of graphs can be studied in detail in Chapter 4 of [12]. Another proof can be found in [1].

Theorem 3.3.12 (Asymptotic freeness of Wigner and deterministic matrices). Let µ1, . . . , µp

be probability measures on R such that all moments exist and the first moment is equal to
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zero. Let A1(n), . . . , Ap(n) be independent n× n Wigner random matrices where the distri-

bution of the entries of Ai(n) is µi for each i ∈ {1, . . . , p}. Let D1(n), . . . , Dq(n) be n × n
deterministic matrices such that

D1(n), . . . , Dq(n)
d→ d1, . . . , dq as n→∞

and

sup
n∈N, r=1,...,q

‖Dr(n)‖ <∞.

Then it holds that

A1(n), . . . , Ap(n), D1(n), . . . , Dq(n)
d→ s1, . . . , sp, d1, . . . , dq,

where si is a standard semicircular element for each 1 ≤ i ≤ p and s1, . . . , sp, {d1, . . . , dq}
are free. The convergence in distribution also holds almost surely. Then A1(n), . . . , Ap(n),

{D1(n), . . . , Dq(n)} are almost surely asymptotically free.

In the same way that the other examples of asymptotic freeness, we can allow that the

matrices Di(n)’s are random matrices. The conclusion of the above theorem still holds pro-

vided that {D1(n), . . . , Dq(n)} are independent random matrices from the Wigner matrices

and have almost sure limit distribution. The proof of this fact follows the same idea of

conditioning, using the assumption of independence and the theorem in its deterministic

version.



Chapter 4

Cyclic Monotone Independence

In this chapter, we present the abstract notion of cyclic monotone independence. We

shall study the basic definitions and compute the eigenvalues of certain polynomials in

cyclically monotone elements which can be seen as trace class operators. As we stated in

the introduction, this chapter is based in the work of Collins, Hasebe and Sakuma [8].

4.1 The Rule of Cyclic Monotone Independence

In a similar way that we think the space of n× n matrices with the normalized trace as a

non-commutative probability space, we want to put the notion of trace on a Hilbert space in

a more general framework. This leads us to define the concept of non-commutative measure

space.

Definition 4.1.1. A non-commutative measure space is a pair (A, ω) where A is a ∗-algebra

over C and ω is a tracial weight which means that:

• ω is defined in a ∗-subalgebra D(ω) of A,

• ω : D(ω)→ C is linear,

• ω is positive, which means that ω(a∗a) ≥ 0 for all a ∈ D(ω),

• ω is selfadjoint, i.e. ω(a∗) = ω(a) for all a ∈ D(ω),

• ω is tracial, i.e. ω(ba) = ω(ab) for all a, b ∈ D(ω).

Remark 4.1.2. We notice that in the case that A is unital, D(ω) = A, and ω(1A) = 1,

then (A,ω) is a non-commutative probability space. In this chapter, by a non-commutative

probability space, we mean a ∗-probability space (C, φ) where the linear functional φ is

tracial.

41
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We can define some analogous concepts of non-commutative probability in this new

setting. For instance:

Definition 4.1.3. • Let (A, ω) be a non-commutative measure space and let a1, . . . , ak ∈
D(ω). We define the distribution of (a1, . . . , ak) as the set of mixed moments

{ω(aε1i1 · · · a
εp
ip

) : p ≥ 1, 1 ≤ i1, . . . , ip ≤ k, (ε1, . . . , εk) ∈ {1, ∗}p}. (4.1)

• Let (A, ω), (B, ξ) be non-commutative measure spaces and let a1, . . . , ak ∈ D(ω),

b1, . . . , bk ∈ D(ξ). We say that (a1, . . . , ak) and (b1, . . . , bk) have the same distribution

if

ω(aε1i1 · · · a
εp
ip

) = ξ(bε1i1 · · · b
εp
ip

), ∀ p ≥ 1, 1 ≤ i1, . . . , ip ≤ k, (ε1, . . . , εk) ∈ {1, ∗}p.
(4.2)

The class of elements in the non-commutative measure spaces on which we will work

are compact operators. For this reason, it is convenient to define the notion of trace class

distribution and convergence in eigenvalues in this new context. More specifically, we have

the next definition.

Definition 4.1.4. Let (A, ω) be a non-commutative measure space and let a1, . . . , ak ∈
D(ω). We say that (a1, . . . , ak) has trace class distribution if there exist a separable Hilbert

space H and elements x1, . . . , xk ∈ (S1(H),TrH) such that the distribution of (a1, . . . , ak)

is the same as that of (x1, . . . , xk). In this case, we define the eigenvalues of a selfadjoint

∗-polynomial P (a1, . . . , ak) to be the eigenvalues of P (x1, . . . , xk).

Definition 4.1.5. Let (A, ω), {(An, ωn)}∞n=1 be non-commutative measure spaces and let

a1, . . . , ak ∈ D(ω), a1(n), . . . , ak(n) ∈ D(ωn), for all n ≥ 1. We say that (a1(n), . . . , ak(n))

converges in distribution to (a1, . . . , ak) if

lim
n→∞

ωn
(
ai1(n)ε1 · · · aip(n)εp

)
= ω

(
aε1i1 · · · a

εp
ip

)
, (4.3)

for any p ≥ 1, 1 ≤ i1, . . . , ip ≤ k, (ε1, . . . , εp) ∈ {1, ∗}p. If the distributions of a ∈ D(ω) and

an ∈ D(ωn) are trace class, we define convergence in eigenvalues according to Definition

1.3.2.

Translating the results of Section 1.3, we get the next proposition about the convergence

in eigenvalues but considering elements in a non-commutative measure space which are trace

class.
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Proposition 4.1.6. (A, ω), {(An, ωn)}∞n=1 be non-commutative measure spaces. Suppose

that ai(n) ∈ D(ωn), ai ∈ D(ω), for i = 1, . . . , k, have trace class distribution and that

(a1(n), . . . , ak(n)) converges in distribution to (a1, . . . , ak). Then, for any non-commutative

selfadjoint ∗-polynomial P without a constant term, P (a1(n), . . . , ak(n)) converges in eigen-

values to P (a1, . . . , ak).

Proof. This result follows from the above definitions on each monomial of P and the Propo-

sition 1.3.6 with p = 1. �

The next step is defining a notion of independence in a non-commutative measure space.

Motivated for the results of Shlyakhtenko in [17] about the asymptotic behavior of the

moments of products of rotationally invariant random matrices and matrices whose all

entries are zero except one of them, Collins, Hasebe and Sakuma in [8] defined an abstract

notion of independence which fits in the framework of non-commutative probability spaces

provided with a tracial weight.

In order to state the notion of independence in which we are interested, we introduce

some notation. Let A,B, C be ∗-algebras such that A,B ⊂ C and 1C ∈ B. We define the set

IB(A) := span {b0a1b1 · · · anbn : n ∈ N, a1, . . . , an ∈ A, b0, . . . , bn ∈ B} . (4.4)

We can readily check that IB(A) is a ∗-ideal of C that contains A. The definition of cyclic

monotone independence can be written as follows.

Definition 4.1.7. Let (C, τ) be a non-commutative probability space with a tracial weight

ω. Let A,B ⊂ C be ∗-subalgebras such that 1C ∈ B. We say that the pair (A,B) is

cyclically monotonically independent with respect to (ω, τ) if IB(A) ⊂ D(ω) and for any

n ∈ N, a1, . . . , an ∈ A, b1, . . . , bn ∈ B, we have that

ω(a1b1a2b2 · · · anbn) = ω(a1a2 · · · an)τ(b1)τ(b2) · · · τ(bn). (4.5)

If (A,B) is cyclically monotonically independent with respect to (ω, τ), we shall often say

that the pair (A,B) is cyclically monotone.

Remark 4.1.8. The above definition can be extended to the case that we are considering

subsets instead of subalgebras. More precisely, we say that the pair ({a1, . . . , ak}, {b1, . . . , b`})
is cyclically monotone if the pair (alg{a1, . . . , ak}, alg{1C , b1, . . . , b`}) is cyclically monotone,

where a1, . . . , ak ∈ D(ω) and b1, . . . , b` ∈ C, and alg(X ) denotes the (not necessarily unital)

∗-algebra in C generated by X ⊂ C.

An interesting question related with cyclic monotone independence is if given a non-

commutative probability space (B, τ) and a non-commutative measure space (A, ω), there
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exists an space where the pair (D(ω),B) is cyclically monotone. A universal construction is

given in the next definition.

Definition 4.1.9. Let (A, ω) be a non-commutative measure space and let (B, τ) be a non-

commutative probability space. We consider A ∗ B the algebraic free product of A and B
where the identity element 1B is identified with the unit elements C1A∗B. If B = B0 ⊕C1B

is a direct sum decomposition as a vector space, X1 = B0 and X2 = A, then

A ∗ B = C1A∗B ⊕

 ∞⊕
n=1

⊕
i1,...,in∈{1,2}

i1 6=i2,...,in−1 6=in

(X1 ⊗ · · · ⊗ Xn)

 .

We define the linear functional ω D τ : D(ω D τ)→ C by the formula

(ω D τ)(b0a1b1a2b2 · · · anbn) := ω(a1a2 · · · an)τ(b1)τ(b2) · · · τ(bn−1)τ(b0bn), (4.6)

for n ≥ 1, a1, . . . , an ∈ D(ω), b0, . . . , bn ∈ B, where

D(ω D τ) = D(ω)⊕ (D(ω)⊗ B0)⊕ (B0 ⊗D(ω))⊕ (D(ω)⊗ B0 ⊗D(ω))⊕ · · · . (4.7)

We say that ω D τ is the cyclic monotone product of ω and τ .

As we are expecting, it turns out that the new space obtained by the cyclic monotone

product is a non-commutative measure space.

Proposition 4.1.10. Let (A, ω) be a non-commutative measure space and let (B, τ) be a

non-commutative probability space. Then (A∗B, ωDτ) is a non-commutative measure space.

Proof. We have to prove that ω D τ is a tracial positive linear functional on D(ω D τ).

The fact that ω D τ is a linear functional is obvious according how it is defined. Now, we

shall prove that ω D τ is tracial. Indeed, if x = b0a1b1 · · · anbn, y = b′0a
′
1b
′
1 · · · a′mb′m, with

ai, a
′
i ∈ D(ω), bj , b

′
j ∈ B, i = 1, . . . , n, j = 1, . . . ,m, then

(ω D τ)(xy) = ω(a1 · · · ana′1 · · · a′m)τ(b0b
′
m)τ(bnb

′
0)
n−1∏
i=1

τ(bi)
m−1∏
j=1

τ(b′j)

= ω(a′1 · · · a′ma1 · · · an)τ(b′mb0)τ(b′0bn)

m−1∏
j=1

τ(b′j)

n−1∏
i=1

τ(bi)

= (ω D τ)(yx),

where it is used that ω and τ are tracial. It remains to prove that ω D τ is positive. In
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order to prove it, we take

x =
n∑
i=1

λibi,0ai,1bi,1 · · · ai,m(i)bi,m(i),

with λi ∈ C, ai,j ∈ D(ω) and bi,j ∈ B. Since ω is positive, we have

0 ≤ ω

((
n∑
i=1

λiai,1 · · · ai,m(i)

)∗( n∑
i=1

λiai,1 · · · ai,m(i)

))

=

n∑
i,j=1

λiλjω
(
a∗i,m(i) · · · a

∗
i,1aj,1 · · · aj,m(j)

)
,

for any λ1, . . . , λn ∈ C. So, we have that the matrixA =
(
ω
(
a∗i,m(i) · · · a

∗
i,1aj,1 · · · aj,m(j)

))n
i,j=1

is positive definite. Since τ is positive, it can also be shown that the matrices

B′ =
(
τ(b∗i,0bj,0)

)n
i,j=1

,

B′′ =
(
τ(b∗i,1)τ(bj,1) · · · τ(b∗i,m(i)−1)τ(bj,m(j)−1)τ(b∗i,m(i)bj,m(j))

)n
i,j=1

are positive definite in an analogous way. For instance, we have that

0 ≤ τ

((
n∑
i=1

λiτ(bi,1) · · · τ(bi,m(i)−1)bi,m(i)

)∗( n∑
i=1

λiτ(bi,1) · · · τ(bi,m(i)−1)bi,m(i)

))

=

n∑
i,j=1

λiλjτ(b∗i,1)τ(bj,1) · · · τ(b∗i,m(i)−1)τ(bj,m(j)−1)τ(b∗i,m(i)bj,m(j))

for any λ1, . . . , λn ∈ C.

Finally, it is known that the Schur product A ◦ B′ ◦ B′′ is positive definite if A,B′ and

B′′ are. Hence

(ω D τ)(x∗x) = (ω D τ)

((
n∑
i=1

λibi.0ai,1bi,1 · · · ai,m(i)bi,m(i)

)∗( n∑
i=1

λibi.0ai,1bi,1 · · · ai,m(i)bi,m(i)

))
= (λ1, . . . , λn)∗

(
A ◦B′ ◦B′′

)
(λ1, . . . , λn)

≥ 0,

for any λ1, . . . , λn ∈ C, that is what we wanted to prove. �

Remark 4.1.11. Given (A, ω) and (B, τ) as in the above proposition, we can construct a

non-commutative probability space with a tracial weight provided by their cyclic monotone
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product and the above proposition. In this space, we have that the pair (D(ω),B) is

cyclically monotone. For this purpose, consider τ̃ : A ∗ B → C the free product of zero

function in A and τ . Then we have that τ̃ is a tracial state in A∗B. Just by the definition

of cyclic monotone product, we have that (A∗B, ωD τ, τ̃) is a non-commutative probability

space with a tracial weight, such that the pair (D(ω),B) is cyclically monotone with respect

to (ω D τ, τ̃).

A final ingredient in relation with the task of looking for analogous definitions of non-

commutative probability theory in the case of non-commutative measure spaces with the

notion of cyclic monotone independence, is stating an appropriate idea of asymptotic cyclic

monotone independence. The main reason of why this is necessary is because the applica-

tions studied in this work have relation with random matrices. With this in mind, we have

the following definition.

Definition 4.1.12. Let (An, ωn, τn) be non-commutative probability spaces with tracial

weights ωn for each n ≥ 1. Let a1(n), . . . , ak(n) ∈ D(ωn), b1(n), . . . , b`(n) ∈ An. We say

that the pair ({a1(n), . . . , ak(n)}, {b1(n), . . . , b`(n)}) is asymptotically cyclically monotone

if there exist a non-commutative probability space (A, ω, τ) with a tracial weight ω, and

elements a1, . . . , ak ∈ D(ω), b1, . . . , b` ∈ A such that

1. the pair ({a1, . . . , ak}, {b1, . . . , b`}) is cyclically monotone,

2. for any non-commutative ∗-polynomial P (x1, . . . , xk, y1, . . . , y`) such that

P (0, . . . , 0, y1, . . . , y`) = 0,

we have that P (a1(n), . . . , ak(n), b1(n), . . . , b`(n)) is an element of the domain of ωn

and the following limit holds:

lim
n→∞

ωn (P (a1(n), . . . , ak(n), b1(n), . . . , b`(n))) = ω (P (a1, . . . , ak, b1, . . . , b`)) . (4.8)

4.2 Eigenvalues of Polynomials of Cyclically Monotone Ele-

ments

An interesting question in relation with the notion of cyclic monotone independence is

whether we can give explicit formulas for the eigenvalues of polynomials on cyclically mono-

tone elements in the framework of trace class operators. In the paper [8], the authors estab-

lish such formulas for the case of some specific polynomials. The objective of this section

is to present the main contribution of this work. In Proposition 4.2.2, we provide a new
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generalization of the formulas in [8]. This allows to give an alternative proof of the formulas

and also sheds light for new ones described in Proposition 4.2.5 and Corollary 4.2.8.

The formulas of the authors of [8] are described in the next theorem.

Theorem 4.2.1. Let (A, ω, τ) be a non-commutative probability space with tracial weight

ω. Consider a, a1, . . . , ak ∈ D(ω) and b, b1, . . . , bk ∈ A such that (a, a1, . . . , ak) are trace

class with respect to ω and ({a1, . . . , ak}, {b1, . . . , bk}) is cyclically monotone with respect to

(ω, τ).

1. If a1, . . . , ak are selfadjoint and B = (τ(b∗i bj))
k
i,j=1 ∈Mk(C), then

EV

(
k∑
i=1

biaib
∗
i

)
= EV

(√
B diag(a1, . . . , ak)

√
B
)
,

where
√
B diag(a1, . . . , ak)

√
B ∈ (Mk(C)⊗A,Trk⊗ ω).

2. If b1, . . . , bk are selfadjoint, then

EV

(
k∑
i=1

aibia
∗
i

)
= EV

(
k∑
i=1

τ(bi)aia
∗
i

)
.

3. If a, b are selfadjoint, p =
√
τ(b2) + τ(b) and q = −

√
τ(b2) + τ(b), then

EV(ab+ ba) = (pEV(a)) t (qEV(a)).

4. If a, b are selfadjoint and r =
√
τ(b2)− τ(b)2, then

EV(i(ab− ba)) = (rEV(a)) t (−rEV(a)).

The above theorem is an example of how cyclic monotone independence can be used to

compute the eigenvalue set of some specific selfadjoint polynomials. Noticing that in the

above formulas the eigenvalues only depend of the elements bi’s through their first moments,

it is natural to ask if in general we can replace the elements bi’s in the polynomials by their

moments. In this sense, we have the next result which is the main contribution of this

manuscript.

Proposition 4.2.2. Let (A, ω, τ) be a non-commutative probability space with tracial weight

ω. Consider Ap =
(
a

(p)
ij

)n
i,j
∈ Mn(D(ω)) and Bq =

(
b
(q)
ij

)n
i,j
∈ Mn(A) for p, q = 1, . . . , k.
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Assume that
(
a

(p)
ij

)n
i,j=1,p=1,...,k

are trace class with respect to ω , and that the pair

({
a

(p)
i,j : p = 1, . . . , k, i, j = 1, . . . , n

}
,
{
b
(q)
i,j : q = 1, . . . , k, i, j = 1, . . . , n

})
is cyclically monotone independent with respect to (ω, τ). Then

Trn⊗ ω (A1B1A2B2 · · ·AkBk) = Trn⊗ ω
(
A1B

′
1A2B

′
2 · · ·AkB′k

)
, (4.9)

where for each p = 1, . . . , k, we have that

B′p = idn⊗ τ(Bp) =
(
τ
(
b
(p)
ij

))n
i,j=1

∈Mn(C).

Proof. Using linearity of Trn and ω, and cyclic monotone independence, it easily follows

that

Trn⊗ ω (A1B1A2B2 · · ·AkBk) =
n∑

i1,i2...,ik=1
j1,j2...,jk=1

ω
(
a

(1)
i1j1

b
(1)
j1i2

a
(2)
i2j2

b
(2)
j2i3
· · · a(k)

ikjk
b
(k)
jki1

)

=

n∑
i1,i2...,ik=1
j1,j2...,jk=1

ω
(
a

(1)
i1j1

a
(2)
i2j2
· · · a(k)

ikjk

)
τ
(
b
(1)
j1i2

)
τ
(
b
(2)
j2i3

)
· · · τ

(
b
(k)
jki1

)

=

n∑
i1,i2...,ik=1
j1,j2...,jk=1

ω
(
a

(1)
i1j1

τ
(
b
(1)
j1i2

)
a

(2)
i2j2

τ
(
b
(2)
j2i3

)
· · · a(k)

ikjk
τ
(
b
(k)
jki1

))
= Trn⊗ ω

(
A1B

′
1A2B

′
2 · · ·AkB′k

)
.

�

Since a power of a matrix of the form A1B1 · · ·AkBk has the same form, it follows that:

Corollary 4.2.3. With the assumptions and notation of Proposition 4.2.2, for any m ≥ 1,

we have that

Trn⊗ ω ((A1B1A2B2 · · ·AkBk)m) = Trn⊗ ω
((
A1B

′
1A2B

′
2 · · ·AkB′k

)m)
, (4.10)

i.e., the moments of A1B1A2B2 · · ·AkBk and A1B
′
1A2B

′
2 · · ·AkB′k with respect Trn⊗ ω are

the same.

We recall Corollary 1.3.7. Providing that A1B1 · · ·AkBk and A1B
′
1 · · ·AkB′k have the

same distribution that of selfadjoint trace class operators and the same moments, it follows
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that

EV(A1B1 · · ·AkBk) = EV(A1B
′
1 · · ·AkB′k).

With this idea, we can give a proof of Theorem 4.2.1 using Proposition 4.2.2.

Proof of Theorem 4.2.1. 1) Assume that a1, . . . , ak are selfadjoint and considerB = (τ(b∗i bj))
k
i,j=1.

Define the matrices

A1 =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...

0 0 · · · ak

 , B0 =


b1 b2 · · · bk

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .

We notice that

B0A1B
∗
0 =



k∑
i=1

biaib
∗
i 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


which is a selfadjoint element in Mk(C) ⊗ A. By traciality, the moments of B0A1B

∗
0 with

respect to Trk⊗ω are the same that the moments of A1B
∗
0B0. By Proposition 4.2.2, these

moments are the same that of AB. Since B is positive definite, we have that the moments

of B0A1B
∗
0 with respect to Trk⊗ω are the same that the moments of

√
BA1

√
B which is

selfadjoint. Since for any m ≥ 1 we have that

Tr⊗ ω((B0A1B
∗
0)m) = ω

((
k∑
i=1

biaib
∗
i

)m)
,

by Corollary 1.3.7, we conclude that

EV

(
k∑
i=1

biaib
∗
i

)
= EV

(√
B diag(a1, . . . , ak)

√
B
)
.

2) Using the same idea of above, if we define

A1 =


a1 a2 · · · ak

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , B1 = diag(b1, . . . , bk),
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we have that

A1B1A
∗
1 = diag

(
k∑
i=1

aibia
∗
i , 0, . . . , 0

)
which is selfadjoint. By Proposition 4.2.2, if B′1 = diag(τ(b1), τ(b2), . . . , τ(bk)), it follows

that for any m ≥ 1

ω

((
k∑
i=1

aibia
∗
i

)m)
= Trk⊗ ω ((A1B1A

∗
1)m)

= Trk⊗ ω
(
(A1B

′
1A
∗
1)m
)

= ω

((
k∑
i=1

aiτ(bi)a
∗
i

)m)
.

Hence

EV

(
k∑
i=1

aibia
∗
i

)
= EV

(
k∑
i=1

τ(bi)aia
∗
i

)
.

3) Assume that a, b are selfadjoint. Consider the matrices

B0 =

(
1 b

0 0

)
, A1 =

(
a 0

0 a

)
, B1 =

(
b 0

1 0

)
.

It follows that

B0A1B1 =

(
ab+ ba 0

0 0

)
which is selfadjoint because a and b are. By Proposition 4.2.2, for any m ≥ 1 we have that

ω((ab+ ba)m) = Tr2⊗ ω((B0A1B1)m)

= Tr2⊗ ω((A1B1B0)m)

= Tr2⊗ ω

(((
a 0

0 a

)(
τ(b) τ(b2)

1 τ(b)

))m)

= Tr2⊗ ω

(
am

(
τ(b) τ(b2)

1 τ(b)

)m)
,

If we have a matrix

(
x y

1 x

)
, by diagonalizing we have that

Tr2

((
x y

1 x

)m)
= (x+

√
y)m + (x−√y)m.
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Then

ω((ab+ ba)m) = Tr2⊗ ω

(
am

(
τ(b) τ(b2)

1 τ(b)

)m)

= Tr2⊗ ω

(
am

(
pm 0

0 qm

))
= ω

(
am
(
τ(b) +

√
τ(b2)

)m
+ am

(
τ(b)−

√
τ(b)2

)m)
= ω ((pa)m + (qa)m) ,

where p and q are defined as in the statement of Theorem 4.2.1. Again by Corollary

1.3.7, we conclude that

EV(ab+ ba) = pEV(a) t qEV(a).

4) Proceeding in an analogous way of 3), defining the matrices

B0 =

(
i − i b

0 0

)
, A1 =

(
a 0

0 a

)
, B1 =

(
b 0

1 0

)

it follows that

B0A1B1 =

(
i(ab− ba) 0

0 0

)
is selfadjoint. For any m ≥ 1, we have that

ω(((i(ab+ ba))m) = Tr2⊗ ω((B0A1B1)m)

= Tr2⊗ ω((A1B1B0)m)

= Tr2⊗ ω

(((
a 0

0 a

)(
i τ(b) − i τ(b2)

i − i τ(b)

))m)

= Tr2⊗ ω

(
am

(
i τ(b) − i τ(b2)

i − i τ(b)

)m)
,

By diagonalizing, we have that

Tr2

((
x y

1 −x

)m)
=
(√

y + x2
)m

+
(
−
√
y + x2

)m
.

Hence

ω((i(ab− ba))m) = Tr2⊗ ω

(
am

(
i τ(b) − i τ(b2)

i − i τ(b)

)m)
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= Tr2⊗ ω

(
am

(
rm 0

0 (−r)m

))
= ω

(
am
(√

τ(b2)− τ(b)2
)m

+ am
(
−
√
τ(b2)− τ(b)2

)m)
= ω ((ra)m + (−ra)m) ,

where r is defined as in the statement of Theorem 4.2.1. We conclude that

EV(i(ab− ba)) = rEV(a) t (−r)EV(a).

�

Remark 4.2.4. We recall the parts 3 and 4 of Theorem 4.2.1 where it is considered only

one element a. In these cases, it was possible to obtain explicit formulas from the fact

that a commutes with itself and then we can compute the trace of powers of a matrix by

adding powers of the eigenvalues of a matrix of some moments of the b’s. The result can be

expressed as the disjoint union of the eigenvalues of λia, where the λi are the eigenvalues

of id⊗τ (B). One can generalize this in the following proposition.

Proposition 4.2.5. Let (A, ω, τ) be a non-commutative probability space with tracial weight

ω. Consider a ∈ D(ω) and b1, . . . , bk, c1, . . . , ck ∈ A such that a is trace class with respect

to ω and ({a}, {b1, c1, . . . , bk, ck}) is cyclically monotone with respect to (ω, τ). Assume

that a, b1, c1, . . . , bk, ck are selfadjoint,
∑k

i=1 biaci is selfadjoint and B′ = (τ(cibj))
k
i,j=1. If

λ1, . . . , λk are the k eigenvalues of B′ counting multiplicity, then

EV

(
k∑
i=1

biaci

)
=

k⊔
i=1

EV(λia). (4.11)

Proof. As in the proof of Theorem 4.2.1, we define the matrices in Mk(A)

B =


b1 b2 · · · bk

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 , C =


c1 0 · · · 0

c2 0 · · · 0
...

...
. . .

...

ck 0 · · · 0

 , A = diag(a, . . . , a).

Then BAC = diag
(∑k

i=1 biack, 0, . . . , 0
)

which is selfadjoint. Proceeding as in the latter

proof, we have that for m ≥ 1

ω

((
k∑
i=1

biaci

)m)
= Trk⊗ω((BAC)m)
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= Trk⊗ω((ACB)m)

= Trk⊗ω
(
(aB′)m

)
= ω

(
k∑
i=1

(λia)m

)
,

where we apply Proposition 4.2.2 in the third equality and use that Trk(X
m) is the sum of

the m-powers of the eigenvalues of X. Hence, it follows that

EV

(
k∑
i=1

biaci

)
=

k⊔
i=1

λiEV(a)

by applying Corollary 1.3.7. �

Remark 4.2.6. The procedure described in the proofs of the above theorems can be applied

to any selfadjoint ∗-polynomial that can be written as the entry (1,1) of a product of matrices

A1B1 · · ·AkBk as in Proposition 4.2.2, and the rest of the entries are zero. However, the

same trick is no longer possible in some polynomials where the number of elements ai is

not the same on each monomial. For instance, consider the polynomial a + babab, where

({a}, {b}) is cyclically monotone. If we would want to write this polynomial as a product

of matrices as in the above proofs, we would have to do the following factorization(
1 b

0 0

)(
a 0

0 a

)(
1 0

0 b

)(
1 0

0 a

)(
1 0

b 0

)
=

(
a+ babab 0

0 0

)
.

However, a matrix with elements in alg(a) must not contain any constant. A solution for

this issue is considering the decomposition(
1 b

0 0

)(
a 0

0 aba

)(
1 0

b 0

)
=

(
a+ babab 0

0 0

)
.

In order to obtain a computation of the moments of the polynomial a+ babab, we can use

Theorem 4.2.1 providing that the new element aba is compatible with the cyclic monotone

independence of ({a}, {b}). Indeed, we have a more general result.

Proposition 4.2.7. Let (A, ω, τ) be a non-commutative probability space with tracial weight

ω. Let a1, . . . , ak ∈ D(ω) and b1, . . . , bk, c1, . . . , ck ∈ A. If ({a1, . . . , ak}, {b1, c1, . . . , bk, ck})
is cyclically monotone, then ({a1c1a

∗
1, . . . , akcka

∗
k}, {b1, c1, . . . , bk, ck}) is cyclically mono-

tone.

Proof. We have to show that if x1, . . . , xn ∈ alg({a1c1a
∗
1, . . . , akcka

∗
k}) and y1, . . . , yn ∈
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alg({1, b1, c1, . . . , bk, ck}), then

ω(x1y1 · · ·xnyn) = ω(x1 · · ·xn)τ(y1) · · · τ(yn).

For notational convenience, we shall prove the result for the case n = 2. The general case

is done in a similar way. Consider the elements

x1 = (ai1ci1a
∗
i1) · · · (aircira∗ir),

x2 = (aj1cj1a
∗
j1) · · · (ajscjsa∗js),

for some 1 ≤ i1, . . . , ir, j1, . . . , js ≤ k. If y1, y2 ∈ alg({1, b1, c1, . . . , bk, ck}), by cyclic mono-

tone independence, we have that

ω(xiy1x2y2) = ω
(
(ai1ci1a

∗
i1) · · · (aircira∗ir)y1(aj1cj1a

∗
j1) · · · (ajscjsa∗js)y2

)
= ω(ai1a

∗
i1 · · · aira

∗
iraj1a

∗
j1 · · · ajsa

∗
js)τ(ci1) · · · τ(cir)τ(y1)τ(cj1) · · · τ(cjs)τ(y2)

On the other hand

ω(x1x2)τ(y1)τ(y2) = ω
(
(ai1ci1a

∗
i1) · · · (aircira∗ir)(aj1cj1a

∗
j1) · · · (ajscjsa∗js)

)
τ(y1)τ(y2)

= ω(ai1a
∗
i1 · · · aira

∗
iraj1a

∗
j1 · · · ajsa

∗
js)

(
r∏
`=1

τ(ci`)

)(
s∏
`=1

τ(cj`)

)
τ(y1)τ(y2)

We finish the proof by comparing the above equations. �

In particular, the above proposition allows to get a formula for another kind of polyno-

mial.

Corollary 4.2.8. Let (A, ω, τ) be a non-commutative probability space with tracial weight

ω. Consider a1, . . . , ak ∈ D(ω) and b1, . . . , bk, c1, . . . , ck ∈ A such that (a1, . . . , ak) are trace

class with respect to ω and ({a1, . . . , ak}, {b1, c1, . . . , bk, ck}) is cyclically monotone with

respect to (ω, τ). If c1, . . . , ck are selfadjoint and B = (τ(b∗i bj))
k
i,j=1 ∈Mk(C), then

EV

(
k∑
i=1

biaicia
∗
i b
∗
i

)
= EV

(√
B diag(d1, . . . , dk)

√
B
)
,

where di = aicia
∗
i for i = 1, . . . , k and

√
B diag(d1, . . . , dk)

√
B ∈ (Mk(C)⊗A,Trk⊗ ω).

Proof. By Proposition 4.2.7, we have that ({d1, . . . , dk}, {b1, . . . , bk}) is cyclically monotone.

Since ci es selfadjoint, then di is also selfadjoint, for i = 1, . . . , k. We conclude by applying

Theorem 4.2.1. �



Chapter 5

Random Matrices and Cyclic

Monotone Independence

In this chapter, we shall establish the connection between spectral theory of random matrices

and the recently presented theory of cyclic monotone independence. This will be held

by proving that Haar invariant random matrices with limiting compact distribution and

random matrices which have limiting distribution with respect to the normalized trace trn

are asymptotically cyclically monotone. The main tool which will be used is the Weingarten

calculus which has already been defined in Chapter 3.

5.1 The Weingarten Formula

The goal of this short section is to derive a formula for computing the moments of certain

products of deterministic matrices and Haar unitary random matrices via the Weingarten

calculus.

First, we introduce some notation. If I is a finite set, let SI the symmetric group

acting on I. In particular, we simply denote Sn as the symmetric group on {1, . . . , n}. Let

U = (Uij)
n
i,j=1 be a Haar unitary random matrix. We can consider E a linear transformation

on Mn(C)⊗k that is defined by the equation

E(A) = E
(
U⊗kA(U∗)⊗k

)
, ∀A ∈Mn(C)⊗k. (5.1)

On the other hand, we can also define Φ : Mn(C)⊗k → C[Sk] by

Φ(A) =
∑
σ∈Sk

TrMn(C)⊗k (ρ(σ)∗A) δσ, (5.2)

55
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where {δσ}σ∈Sk is the canonical basis in C[Sk] and ρ : Sk →Mn(C)⊗k is the representation

given by

ρ(σ)(v1 ⊗ · · · ⊗ vk) = vσ−1(1) ⊗ · · · ⊗ vσ−1(k), where vi ∈ Cn, i = 1, . . . , k. (5.3)

We recall the Weingarten function Wg defined by (3.11). It is proved in [9] that the

Weingarten function is related with the map Φ by the equation

Φ(AEB) = Φ(A)Φ(B) Wg, ∀ A,B ∈Mn(C)⊗k, (5.4)

where

Wg =
∑
σ∈Sk

Wg(σ, n)δσ.

For our purposes, it will be enough to consider the cases of pure tensors A = A1⊗· · ·⊗Ak,
B = B1⊗· · ·⊗Bk, where Ai, Bi ∈Mn(C), i = 1, . . . , k. For this class of elements, we define

a kind of multiplicative extension of the trace for every σ ∈ Sk. If c = (i1i2 · · · im) is a cycle,

let Ac = Ai1 · · ·Aim and if σ = c1 · · · c`(σ) is the cycle decomposition of σ, then

Trσ(A1, . . . , Ak) =

`(σ)∏
i=1

Trn (Aci) . (5.5)

With this notation, it turns out that

TrMn(C)⊗k(ρ(σ)∗A) = Trσ(A1, . . . , Ak), ∀σ ∈ Sk. (5.6)

We provide a proof of the above formula in the appendix of this work. Finally, combining

(5.4) and (5.6), and taking the coefficient of δσ, we get the main formula that will be used

in the next proofs:

E(Trσ(A1UB1U
∗, . . . , AkUBkU

∗)) =
∑

σ1,σ2,σ3∈Sk
σ1σ2σ3=σ

Trσ1(A1, . . . , Ak) Trσ2(B1, . . . , Bk) Wg(σ3, n).

(5.7)

5.2 Asymptotic Cyclic Monotone Independence of Random

Matrices

We are ready to state and prove the first main result of the asymptotic cyclic monotone

independence of random matrices on average. As we have already mentioned, the main tool
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for the proof will be the formula (5.7).

Theorem 5.2.1. Let n ∈ N. Let U = U(n) be an n× n Haar unitary random matrix and

Ai = Ai(n), Bj = Bj(n), i = 1, . . . , k, j = 1, . . . , ` be n× n random matrices such that

1. ((A1, . . . , Ak),E ⊗ Trn) converges in distribution to a k-tuple of trace class operators

as n→∞.

2. ((B1, . . . , B`),E ⊗ trn) converges in distribution to an `-tuple of elements in a non-

commutative probability space as n→∞.

3. {A1, . . . , Ak}, {B1, . . . , B`}, U are independent.

Then the pair ({A1, . . . , Ak}, {UB1U
∗, . . . , UB`U

∗}) is asymptotically cyclically monotone

with respect to (E⊗ Trn,E⊗ trn).

Proof. We shall make some assumptions. First, we can take k = ` since it is possible to add

zero matrices to the Ai’s or identity matrices to the Bj ’s and having the same distribution.

In order to simplify the notation, we shall write Bj instead of UBjU
∗. Then it will be

enough to prove that the

lim
n→∞

E (Trn(A1B1 · · ·AkBk)) = lim
n→∞

E(Trn(A1 · · ·Ak))
k∏
i=1

lim
n→∞

E(trn(Bi)). (5.8)

This is because of each ∗-polynomial P in A1, . . . , Ak, B1, . . . , Bk is sum of monomials of the

form B′0A
′
1B
′
1 · · ·A′mB′m, where A′i ∈ alg{A1, . . . , Ak}, B′i ∈ alg{In, B1, . . . , Bk}. Moreover,

since we have traciality, the distribution of B′0A
′
1B
′
1 · · ·A′mB′m respect to Trn is the same

that of A′1B
′
1 · · ·A′mB′mB′0. Then, once we have the desired factorization, it is possible to

give the non-commutative probability space with a tracial weight according to the limit of

this factorization in order to satisfy the rule of cyclic monotone independence of the limiting

random variables. This is done via the cyclic monotone product given in the Definition 4.1.9.

Let Z be the cycle Z = (1 · · · k) ∈ Sk. Recalling that {Ai}ki=1, {Bi}ki=1, U are indepen-

dent random matrices, we have that:

E(Trn(A1B1 · · ·AkBk)) =
∑

σ1,σ2,σ3∈Sk
σ1σ2σ3=Z

E(Trσ1(A1, . . . , Ak))E(Trσ2(B1, . . . , Bk)) Wg(σ3, n).

(5.9)

We proceed to analyze the later equation in order to find out which terms in the sum have

a non-zero contribution in the limit as n→∞. By assumption, we have that (A1, . . . , Ak)

converges in distribution, and then Trσ1(A1, . . . , Ak) is O(1). In the same way, we have that

Trσ2(B1, . . . , Bk) is O(nk−|σ2|) since (B1, . . . , Bk) converges in distribution with respect to
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the normalized trace. Here, |σ| denotes the minimal number of transpositions to express

σ as a product of them, and hence `(σ) = k − |σ|. On the other hand, from the asymp-

totic behavior of the Weingarten function given by (3.13), we also have that Wg(σ3, n) is

O(n−k−|σ3|). Hence, each term in the sum (5.9) is O(n−|σ2|−|σ3|). From this, we have that

the terms in the sum of (5.9) which have a non-zero contribution in the limit are those

such that |σ2| = |σ3| = 0, which means that σ2 = σ3 = 1k. Recalling that σ1σ2σ3 = Z, we

conclude that σ1 = Z. Finally, using the definition of Trσ and the fact that Wg(1k, k) = 1,

we conclude that

E(Trn(A1B1 · · ·AkBk)) = E(Trn(A1A2 · · ·Ak))
k∏
i=1

E(trn(Bi)) +O(n−1), (5.10)

that is what we wanted to prove. �

Remark 5.2.2. In the previous theorem, it was considered the situation that the random

matrices Bj , which converges in distribution in the sense of non-commutative probabil-

ity, were conjugated by the Haar unitary random matrix U . However, the same proof

works if we take the case that the random matrices Ai are conjugated by the Haar uni-

tary. In other words, in the conclusion of the above theorem, we can replace the pair

({A1, . . . , Ak}, {UB1U
∗, . . . , UB`U

∗}) with ({UA1U
∗, . . . , UAkU

∗}, {B1, . . . , B`}), and the

result is also true because of traciality.

The second main result is about the almost sure convergence of the traces of the random

matrix models discussed in the above theorem. It will be necessary to prove the next

technical lemma.

Lemma 5.2.3. Let n ∈ N. Let U = U(n) be an n × n Haar unitary random matrix and

Ai = Ai(n), Bj = Bj(n), i = 1, . . . , k, j = 1, . . . , k be n × n deterministic matrices such

that

1. ((A1, . . . , Ak),Trn) converges in distribution to a k-tuple of trace class operators as

n→∞.

2. ((B1, . . . , Bk), trn) converges in distribution to a k-tuple of elements in a non-commutative

probability space as n→∞.

Then

E
(
|Trn(A1UB1U

∗ · · ·AkUBkU∗)− E (Trn(A1UB1U
∗ · · ·AkUBkU∗))|4

)
= O(n−2). (5.11)
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Proof. As the same way that we did in the last proof, we denote Bi instead of UBiU
∗. In

order to prove the lemma, we shall prove the next generalization: if we take 4k matrices of

each type instead of k, and let

Xi = Trn
(
A(i−1)k+1B(i−1)k+1 · · ·A(i−1)k+kB(i−1)k+k

)
, i = 1, 2, 3, 4,

X̂i = Xi − E(Xi),

then E
(
X̂1X̂2X̂3X̂4

)
= O(n−2). Once we prove this, the lemma follows taking X3 = X1

and X4 = X2 = X1 since

X1 = Trn ((A1B1 · · ·Bk−1AkBk)
∗) = Trn

(
A∗kB

∗
k−1 · · ·B∗1A∗1B∗k

)
.

We introduce some notation. For i = 1, 2, 3, 4, let

Ii = {(i− 1)k + 1, (i− 1)k + 2, . . . , (i− 1)k + k},

Zi = ((i− 1)k + 1(i− 1)k + 2, . . . , (i− 1)k + k) ∈ SIi ,

Y = Z1Z2Z3Z4 ∈ S4k.

Using linearity of expectation, when we expand the moment E
(
X̂1X̂2X̂3X̂4

)
we have a

sum of 16 terms

E
(
X̂1X̂2X̂3X̂4

)
=

∑
A⊂{1,2,3,4}

EA, (5.12)

where

EA = (−1)|A|E

(∏
i∈A

Xi

) ∏
i∈Ac

E(Xi). (5.13)

Each of the above expectations can be computed using (5.7) and the definition of Trσ.

Hence, EA can be written as

EA =
∑

σ1,σ2,σ3∈S4k
σ1σ2σ3=Y

Trσ1(A1, . . . , A4k) Trσ2(B1, . . . , B4k)fA(σ1, σ2, σ3, n), (5.14)

for some numbers fA(σ1, σ2, σ3, n), A ⊂ {1, 2, 3, 4}, which are equal to zero or are signed

products of two, three or four Weingarten functions. We have then

E
(
X̂1X̂2X̂3X̂4

)
=

∑
σ1,σ2,σ3∈S4k
σ1σ2σ3=Y

Trσ1(A1, . . . , A4k) Trσ2(B1, . . . , B4k)f(σ1, σ2, σ3, n), (5.15)

where f(σ1, σ2, σ3, n) =
∑

A⊂{1,2,3,4} fA(σ1, σ2, σ3, n).
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It is time to use the assumptions. We know that Trσ1(A1, . . . , A4k) = O(1) and

Trσ2(B1, . . . , B4k) = O(n−`(σ2)) = O(n−|σ2|+4k).

Since Wg(σ3, n) = O(n−4k−|σ3|), we have that

Trσ2(B1, . . . , B4k)f(σ1, σ2, σ3, n) = O(n−|σ2|−|σ3|). (5.16)

We have to show now that Trσ2(B1, . . . , B4k)f(σ1, σ2, σ3, n) = O(n−2), which is equivalent

to show that f(σ1, σ2, σ3, n) = O(n−4k+|σ2|−2).

Let σ1, σ2, σ3 be fixed permutations in S4k such that σ1σ2σ3 = Y. We give an equivalence

relation in {1, . . . , 4k} as follows: i ∼ j if and only if there exists a τ ∈ 〈σ1, σ2, σ3〉, the

subgroup of S4k generated by σ1, σ2, σ3, such that τ(i) = j. Obviously, Y ∈ 〈σ1, σ2, σ3〉,
and then every Ii is a subset of some equivalence class of the relation. With this, a partition

π(σ1, σ2, σ3) = {V1, . . . , Vm} ∈ P(4) can be constructed such that the equivalence classes of

the relation described before are exactly
⋃
i∈V1 Ii,

⋃
i∈V2 Ii, . . . ,

⋃
i∈Vm Ii. On the other hand,

for any A ⊂ {1, 2, 3, 4}, let π(A) = {A, {b} : b ∈ Ac} be a partition in P(4). Then, the

only subsets A such that fA possibly has a non-zero contribution to the sum in f are those

which π(A) are coarser than or equal to π(σ1, σ2, σ3), and fA = 0 for the other subsets A.

Now we have to analyze the order of f(σ1, σ2, σ3, n). We shall do this according the block

type of π(σ1, σ2, σ3). We have the next cases:

(1) π(σ1, σ2, σ3) = {1, 2, 3, 4}. This means that there is only one equivalence class, and

then the group 〈σ1, σ2, σ3〉 acts transitively on {1, . . . , 4k}. The only A such that π(A)

is coarser than or equal to {1, 2, 3, 4} is A = {1, 2, 3, 4}, and then f{1,2,3,4} = Wg(σ3, n).

We note that |σ2| + |σ3| ≥ 2. Indeed, if |σ2| = 0 = |σ3|, then σ2 = 1S4k
= σ3, and since

σ1σ2σ3 = Y , then σ1 = Y . We recall that Y is a product of four disjoint cycles. In

particular, there is no τ ∈ 〈Y 〉 such that τ(1) = k + 1. Then it is not possible that there is

only one equivalence class. In the same way, if |σ2|+|σ3| = 1, then σ2 and σ3 are the identity

element and a transposition. Since σ1σ2σ3 = Y , then σ1 has at least three cycles in its cycle

decomposition. This is not possible since 〈σ1, σ2, σ3〉 acts transitively on {1, . . . , 4k}. We

conclude that |σ2|+ |σ3| ≥ 2 and by (5.16), we have that

Trσ2(B1, . . . , B4k)f(σ1, σ2, σ3, n) = O(n−2).

(2) π(σ1, σ2, σ3) is a pair partition. Again, the only A such that fA is nonzero is the set

A = {1, 2, 3, 4}. We have again that f = Wg(σ3, n), |σ2|+ |σ3| ≥ 2 and

Trσ2(B1, . . . , B4k)f(σ1, σ2, σ3, n) = O(n−2).
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(3) π(σ1, σ2, σ3) has two blocks, one of size 3 and the other of size 1, for instance

{{1, 2, 3}, {4}}. The subsets A for which fA is not zero are {1, 2, 3, 4} and {1, 2, 3}. We

know that f{1,2,3,4} = Wg(σ3, n). In order to compute f{1,2,3}, we use (5.7) as follows

E{1,2,3} = (−1)3E(X1X2X3)E(X4)

= −

 ∑
σ′1,σ

′
2,σ
′
3∈S3k

σ′1σ
′
2σ
′
3=(1···k)(k+1···2k)(2k+1···3k)

Trσ′1(A1, . . . , A3k) Trσ′2(B1, . . . , B3k) Wg(σ′3, n)



×

 ∑
σ′′1 ,σ

′′
2 ,σ
′′
3∈SI4

σ′′1 σ
′′
2 σ
′′
3 =(3k+1···4k)

Trσ′′1 (A3k+1, . . . , A4k) Trσ′′2 (B3k+1, . . . , B4k) Wg(σ′′3 , n)


= −

∑
σ1,σ2,σ3∈S4k
σ1σ2σ3=Y

σ1,σ2 leave I1∪I2∪I3,
and I4 invariant

Trσ1(A1, . . . , A4k) Trσ2(B1, . . . , B4k) Wg(σ3|I1∪I2∪I3)Wg(σ3|I4)

=
∑

σ1,σ2,σ3∈S4k
σ1σ2σ3=Y

Trσ1(A1, . . . , A4k) Trσ2(B1, . . . , B4k)fA(σ1, σ2, σ3, n),

where the permutations σi are formed by the product of σ′i and σ′′i , i = 1, 2, 3. We have

that f{1,2,3} = −Wg(σ3|I1∪I2∪I3 , n)Wg(σ3|I4 , n). On the other hand, by Lemma 3.3.8, we

can write

Wg(σ, n) = n−4k−|σ3| (µ(σ3) +O(n−2)
)
, (5.17)

where µ(σ3) =
∏`(σ3)
i=1 (−1)|ci|C|ci|, and σ3 = c1 · · · c`(σ3) is the cycle decomposition of σ3.

We have that µ is multiplicative and hence

f = f{1,2,3} + f{1,2,3,4}

= −Wg(σ3|I1∪I2∪I3 , n)Wg(σ3|I4 , n) + Wg(σ3, n)

= n−4k−|σ3| (−µ(σ3|I1∪I2∪I3)µ(σ3|I4) + µ(σ3) +O(n−2)
)

= n−4k−|σ3| (−µ(σ3) + µ(σ3) +O(n−2)
)

= O(n−4k−|σ3|−2)

where in the third equality we use (5.17) and in the fourth equality we use that µ is

multiplicative. We can conclude that

Trσ2(B1, . . . , B4k)f(σ1, σ2, σ3, n) = O(n−|σ2|−|σ3|−2).
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(4) π(σ1, σ2, σ3) has three blocks, for instance {{1, 2}, {3}, {4}}. In this case, the subsets

A such that π(A) is coarser than or equal to π(σ1, σ2, σ3) are {1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2}.
Proceeding in a similar way that the latter case we have that

f = f{1,2} + f{1,2,3} + f{1,2,4} + f{1,2,3,4}

= Wg(σ3|I1∪I2 , n)Wg(σ3|I3 , n)Wg(σ3|I4), n)−Wg(σ3|I1∪I2∪I3 , n)Wg(σ3|I4 , n)

−Wg(σ3|I1∪I2∪I4 , n)Wg(σ3|I3 , n) + Wg(σ3, n)

= n−4k−|σ3| [µ(σ3|I1∪I2)µ(σ3|I3)µ(σ3|I4))− µ(σ3|I1∪I2∪I3)µ(σ3|I4)

−µ(σ3|I1∪I2∪I4)µ(σ3|I3) + µ(σ3) +O(n−2)
]

= O(n−4k−|σ3|−2),

and again Trσ2(B1, . . . , B4k)f(σ1, σ2, σ3, n) = O(n−|σ2|−|σ3|−2).

(5) π(σ1, σ2, σ3) = {{1}, {2}, {3}, {4}}. In this final case, the sixteen subsets of {1, 2, 3, 4}
have a nonzero contribution to the sum in f . Using that µ is multiplicative:

f =
∑

A⊂{1,2,3,4}

(−1)|A|n−4k−|σ3| (µ(σ3|I1)µ(σ3|I2)µ(σ3|I3)µ(σ3|I4) +O(n−2)
)

(5.18)

We notice that the exactly half of the terms in the sum have positive sign. Hence the

dominant terms in the sum get canceled and we conclude that f = O(n−4k+|σ3|−2).

In all the cases we proved that f(σ1, σ2, σ3) = O(n−4k+|σ3|−2), that it was what we

wanted to show and the proof is complete. �

The above lemma lead us to a short proof of the almost sure version of Theorem 5.2.1.

Theorem 5.2.4. Let n ∈ N. Let U = U(n) be an n× n Haar unitary random matrix and

Ai = Ai(n), Bj = Bj(n), i = 1, . . . , k, j = 1, . . . , ` be n×n deterministic matrices such that

1. ((A1, . . . , Ak),Trn) converges in distribution to a k-tuple of trace class operators as

n→∞.

2. ((B1, . . . , B`), trn) converges in distribution to an `-tuple of elements in a non-commutative

probability space as n→∞.

Then the pair ({A1, . . . , Ak}, {B1, . . . , B`}) is asymptotically cyclically monotone almost

surely with respect to (Trn, trn).

Proof. We write Bi instead of UBiU
∗. Repeating the same arguments in the proof of
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Theorem 5.2.1, it will be enough to prove the case k = ` and that

lim
n→∞

Trn(A1B1 · · ·AkBk) = lim
n→∞

Trn(A1 · · ·Ak)
k∏
i=1

lim
n→∞

trn(Bi) almost surely. (5.19)

Applying Lemma 5.2.3 and monotone convergence theorem:

E

( ∞∑
n=1

|Trn(A1B1 · · ·AkUBk)− E (Trn(A1B1 · · ·AkBk))|4
)
<∞. (5.20)

Since a random variable with finite expectation must be finite almost surely, we have that

∞∑
n=1

|Trn(A1B1 · · ·AkBk)− E (Trn(A1B1 · · ·AkBk))|4 <∞ a.s. (5.21)

and then limn→∞ |Trn(A1B1 · · ·AkBk)− E (Trn(A1B1 · · ·AkBk))| = 0 almost surely. Fi-

nally, by using Theorem 5.2.1, we get that

lim
n→∞

Trn(A1B1 · · ·AkBk) = lim
n→∞

E (Trn(A1B1 · · ·AkBk))

= lim
n→∞

Trn(A1 · · ·Ak)
k∏
i=1

lim
n→∞

trn(Bi) (5.22)

(we recall that trn(Bi) = trn(UBiU
∗) = trn(Bi) and that Bi’s are deterministic matrices,

so we can omit the symbol E in the right-hand side of (5.22)). �

Remark 5.2.5. In Lemma 5.2.3 and Theorem 5.2.4, it is enough to assume that the matri-

ces Ai, Bj are deterministic. However, this can be extended to the random case as we did in

Corollary 3.3.5. This means that if Ai, Bj are random matrices such that {Ai}, {Bj}, U are

independent with U a Haar unitary such that (A1, . . . , Ak) and (B1, . . . , Bk) almost surely

converge in distribution to deterministic elements, we can condition Ai, Bj to be constant

and get the same results. For instance, we can take Bi to be the same matrix G in the

Gaussian Unitary Ensemble because we know that G almost surely converges in distribution

to a semicircular element. Also, we do not need to consider the Haar unitary because the

GUE are rotationally invariant.

We can combine the last theorem with the results of convergence of eigenvalues studied

in Chapter 1. In particular, we have the next result which will be useful when we are dealing

with the convergence in eigenvalues in the compact framework.

Corollary 5.2.6. We suppose the assumptions of Theorem 5.2.4. Then for any selfadjoint

∗-polynomial P (x1, . . . , xk, y1, . . . , y`) such that P (0, . . . , 0, y1, . . . , yk) = 0, the Hermitian
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random matrix P (A1, . . . , Ak, UB1U
∗, . . . , UB`U

∗) converges in eigenvalues to a selfadjoint

Hilbert-Schmidt operator almost surely. The limiting eigenvalues can be computed by the

rule of cyclic monotone independence.

Proof. The result follows by Proposition 1.3.8, where we notice that the fact that the

limiting operator is Hilbert-Schmidt is because the Ai’s are trace class, i.e. they are elements

in S1 ⊂ S2, and Proposition 1.3.8 works with p an even integer. �

5.3 General Compact Case and Several Haar Unitaries Case

This section is devoted to study some generalizations of the results proved in the last section.

The first one refers that compact operators with additional assumptions are asymptotic

cyclically monotone independent. The proof of this statement relies on the fact that a

compact operator can be approximated by trace class operators.

Theorem 5.3.1. Let n ∈ N. Let U = U(n) be an n× n Haar unitary random matrix and

Ai = Ai(n), Bj = Bj(n), i = 1, . . . , k, j = 1, . . . , ` be n×n deterministic matrices such that

1. A1, . . . , Ak are Hermitian,

2. ((A1, . . . , Ak),Trn) converges in compact distribution (Definition 1.3.4) to a k-tuple

of compact operators ((a1, . . . , ak),TrH) as n→∞,

3. ((B1, . . . , B`), trn) converges in distribution to an `-tuple of elements in a non-commutative

probability space as n→∞,

4. supn∈N ‖Bi(n)‖ <∞ for every i = 1, . . . , `, where ‖ · ‖ denotes the operator norm on

Mn(C).

Let P (x1, . . . , xk, y1, . . . , y`) be a selfadjoint ∗-polynomial with selfadjoint variables x1, . . . , xk

such that P (0, . . . , 0, y1, . . . , y`) = 0. Then P (A1, . . . , Ak, UB1U
∗, . . . , UB`U

∗) converges in

eigenvalues to a deterministic compact operator almost surely.

Proof. The general idea of the proof is to consider a sequence of truncations of our operators

in order to have trace class operators in which we will be able to apply the above results

already proved. We shall choose the truncations such that they approximate the polynomial

P (A1, . . . , Ak, B1, . . . , B`). In this way, the searched limiting eigenvalues will arise by taking

the limit when n goes to infinity and also taking the limit in the sequence of truncated

operators.

Once again, we can take k = ` and we simply write Bi instead of UBiU
∗. The as-

sumption (4) is still valid since ‖Bp(n)‖ = ‖UBp(n)U∗‖ when U is unitary. By assumption
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(2), Ai converges to ai in eigenvalues for every i = 1, . . . , k. In particular we have that

supn ‖Ap(n)‖ < ∞ for any p = 1, . . . , k. Then, we can find a sequence {εj}∞j=1 of real

numbers such that it is decreasing, converging to 0 and

{εj}∞j=1 ∩ {λui (Ap(n)), lim
N→∞

|λui (Ap(N))| : n, i ≥ 1, p = 1, . . . , k, u ∈ {+,−}} = ∅,

i.e., εj is not any of the absolute value of the eigenvalues of Ai and ai, for every i = 1, . . . , k.

For the truncations of the operators, we shall consider continuous functions fj on R such

that

fj(x) =

{
0, |x| < εj+1,

x, |x| > εj ,
(5.23)

and fj is non-decreasing, for any j ∈ N. We denote A
(j)
p = fj(Ap) and a

(j)
p = fj(ap)

for any j ∈ N, p = 1, . . . , k. By spectral theorem and functional calculus (Theorem 3.4

in [14]), we have that A
(j)
p and a

(j)
p are trace class operators (they are finite rank oper-

ators). Also, by assumption (2) and directly from the definition of convergence in com-

pact distribution, we have that ((A
(j)
1 , . . . , A

(j)
k ),Trn) converges in compact distribution to

((a
(j)
1 , . . . , a

(j)
k ),TrH) when n → ∞ for any j ∈ N. In this frame, we are able to apply

Corollary 5.2.6 and deduce that for any j ∈ N, the random eigenvalues of the polynomial

P (A
(j)
1 , . . . , A

(j)
k , B1, . . . , Bk) converges almost surely to the eigenvalues {λ(j)

i }∞i=1 of a de-

terministic selfadjoint Hilbert-Schmidt operator. We denote by {λ(j)
i (n)}∞i=1 the eigenvalues

of P (A
(j)
1 , . . . , A

(j)
k , B1, . . . , Bk). According to the form of fj and using functional calculus,

we have that

sup
n∈N,1≤p≤k

‖A(j)
p −Ap‖ ≤ εj , ∀ j ∈ N, (5.24)

sup
n∈N,1≤p≤k

‖A(j)
p −A(j′)

p ‖ ≤ εj , ∀ 1 ≤ j ≤ j′. (5.25)

Because of sup
n∈N,1≤k≤p

‖Ap(n)‖ <∞ and (5.24), we get that sup
n∈N,1≤k≤p

‖A(j)
p (n)‖ <∞ for any

j ≥ 1. The previous bounds and assumption (4) allow to prove that the following random

variables converge to zero almost surely as j →∞:

δj = sup
n∈N

∥∥∥P (A1, . . . , Ak, B1, . . . , Bk)− P (A
(j)
1 , . . . , A

(j)
k , B1, . . . , Bk)

∥∥∥ , (5.26)

δj,j′ = sup
n∈N

∥∥∥P (A
(j)
1 , . . . , A

(j)
k , B1, . . . , Bk)− P (A

(j′)
1 , . . . , A

(j′)
k , B1, . . . , Bk)

∥∥∥ . (5.27)

This finishes the first step of the proof. For the second step, we know that λ
(j)
i (n) → λ

(j)
i

as n → ∞ for any i, j ≥ 1. Since δj → 0, we want to prove now that the eigenvalues of
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P (A1, . . . , Ak, B1, . . . , Bk) converges to the limit of λ
(j)
i as j → ∞ provided that it exists.

Let {λi(n)}∞i=1 be the eigenvalues of P (A1, . . . , Ak, B1, . . . , Bk). From (5.24), (5.25) and a

consequence of Weyl’s inequality, it can be followed that∣∣∣λ±i (n)− (λ
(j)
i )±(n)

∣∣∣ ≤ δj a.s.,
∣∣∣(λ(j′)

i )±(n)− (λ
(j)
i )±(n)

∣∣∣ ≤ δj,j′ a.s., ∀ i, j, n ∈ N.
(5.28)

The existence of limj→∞ λ
(j)
i for any i ≥ 1 is guaranteed by the second inequality in (5.28)

because of such inequality implies that |(λ(j)
i )±− (λ

(j′)
i )±| ≤ δj,j′ for j ≤ j′. Then {λ(j)

i }∞j=1

is a Cauchy sequence for any i ≥ 1 and the limit λ±i = limj→∞(λ
(j)
i )± exists for any i ≥ 1.

Hence, the almost sure convergence λ±i (n) → λ±i follows from taking j → ∞ in the next

inequalities:

lim sup
n→∞

|λ±i (n)− λ±i | ≤ lim sup
n→∞

∣∣∣λ±i (n)− (λ
(j)
i )±(n)

∣∣∣+ lim sup
n→∞

∣∣∣(λ(j)
i )±(n)− (λ

(j)
i )±

∣∣∣
+
∣∣∣(λ(j)

i )± − λ±i
∣∣∣

≤ δj +
∣∣∣(λ(j)

i )± − λ±i
∣∣∣ almost surely.

The final step of the proof consists in proving that the sequence {λi}∞i=1 corresponds to

the eigenvalues of a selfadjoint compact operator, i.e. we have to prove that λi → 0 as

i→∞. In order to prove that, we shall use the next result about variational properties of

eigenvalues which can be proved using the minimax principle:

• Let s1(X) ≥ s2(X) ≥ · · · ≥ 0 be the singular values of a compact operator X. Then

si(XY Z) ≤ ‖X‖‖Z‖si(Y ) and si+j−1(X + Y ) ≤ si(X) + sj(Y ).

We also recall that if X is a selfadjoint operator, then si(X) = |λi(X)|. We know that each

monomial in P (A1, . . . , Ak, B1, . . . , Bk) has a factor Ap for some 1 ≤ p ≤ k. We write the

monomials as XrAp(r)Yr, and then P (A1, . . . , Ak, B1, . . . , Bk) =
∑m

r=1XrAp(r)Yr. Using

repeatedly (•), we have a bound for the (mi−m+ 1)-th singular value of P :

smi−m+1(P ) ≤ si(X1Ap(1)Y1) + s(m−1)i−m+2

(
m∑
r=2

XrAp(r)Yr

)

≤
m∑
r=1

si(XrAp(r)Yr)

≤
m∑
r=1

si(Ap(r))‖Xr‖‖Yr‖.

Let ε > 0. We recall that Ap converges in eigenvalues to a compact operator. Hence,
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there exists i0 ∈ N such that sup
n∈N,1≤p≤k

|λi(Ap(n))| ≤ ε/m, for i ≥ i0. On the other hand,

we have seen that supn∈N ‖Ap(n)‖ < ∞ and supn∈N ‖Bp(n)‖ < ∞ by assumption. Then

supn∈N{‖Xr‖, ‖Yr‖ : 1 ≤ r ≤ m} = K <∞ and

smi−m+1(P ) ≤ K2ε.

Since the sequence of singular values is decreasing, we have that supn∈N ‖λi(n)‖ = supn∈N si(P )

converges to 0 a.s. as i→∞ . Finally, we get the conclusion by noticing that

lim
i→∞
|λi| = lim

i→∞
lim
n→∞

|λi| ≤ lim
i→∞

lim
n→∞

|λi(n)− λi|+ lim
i→∞

sup
n∈N
|λi(n)| = 0. (5.29)

�

The second generalization consists in not only to consider one Haar unitary random

matrix but several of them. The related results can be proved by combining the previous

theorems and the asymptotic freeness of independent Haar unitary random matrices de-

scribed in Theorem 3.3.9. The first result is a generalization of Theorem 5.2.1 and can be

stated in the following way.

Theorem 5.3.2. Let n ∈ N. Let Ui = Ui(n) be n × n independent Haar unitary random

matrices for i = 1, . . . , k and Ai = Ai(n), Bij = Bij(n), i, j = 1, . . . , k, be n × n random

matrices such that

1. ((A1, . . . , Ak),E ⊗ Trn) converges in distribution to a k-tuple of trace class operators

as n→∞.

2. ((Bi1, . . . , Bik),E⊗ trn) converges in distribution to an k-tuple of elements in a non-

commutative probability space as n→∞, for each i = 1, . . . , k,

3. {A1, . . . , Ak}, {B11, B12, . . . , Bkk}, {U1, . . . , Uk} are independent.

Then the pair ({A1, . . . , Ak}, {UiBijU∗i }ki,j=1) is asymptotically cyclically monotone with

respect to (E⊗ Trn,E⊗ trn).

Proof. The proof is based in applying Theorem 5.2.1 to a family {Cj}k
2

j=1 obtained by asymp-

totic freeness. Indeed, let U be a Haar unitary random matrix independent of {A1, . . . , Ak},
{B11, . . . , Bkk} and {U1, . . . , Uk} and let Cij = UiBijU

∗
i . By Theorem 3.3.9, we have that

{C1j}kj=1, . . . , {Ckj}kj=1 are asymptotically free with respect to E ⊗ trn, and then we have

that ((C11, . . . , Ckk),E ⊗ trn) converges in distribution to a k2-tuple of elements in a non-

commutative probability space as n → ∞. With this new k2-tuple, we can now apply
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Theorem 5.2.1 in order to get that ({A1, . . . , Ak}, {UC11U
∗, . . . , UCkkU

∗}) is asymptoti-

cally cyclically monotone with respect to (E⊗Trn,E⊗ trn). We finish the proof by noticing

that by definition of Haar measure, UUi has the same distribution as Ui for 1 ≤ i ≤ k,

and by independence, (C11, . . . , Ckk) has the same distribution as (UC11U
∗, . . . , UCkkU

∗).

Therefore ({A1, . . . , Ak}, {C11, . . . , Ckk}) is asymptotically cyclically monotone with respect

to (E⊗ Trn,E⊗ trn). �

Using the same ideas, we can get a version of Theorems 5.2.4, 5.3.1 and Corollary 5.2.6

when several Haar unitary random matrices are considered instead of only one. For instance,

the statement of the generalized version of Corollary 5.2.6 can be written in the following

way.

Corollary 5.3.3. Let n ∈ N. Let Ui = Ui(n) be n × n independent Haar unitary random

matrices for i = 1, . . . , k and Ai = Ai(n), Bij = Bij(n), i, j = 1, . . . , k, be n×n deterministic

matrices such that

1. ((A1, . . . , Ak),Trn) converges in distribution to a k-tuple of trace class operators as

n→∞.

2. ((Bi1, . . . , Bik), trn) converges in distribution to an k-tuple of elements in a non-

commutative probability space as n→∞, for each i = 1, . . . , k.

Then for any selfadjoint ∗-polynomial P (x1, . . . , xk, y11, y12, . . . , ykk) such that

P (0, . . . , 0, y11, . . . , ykk) = 0,

the Hermitian random matrix

P (A1, . . . , Ak, U1B11U
∗
1 , U1B12U

∗
1 , . . . , U1B1kU

∗
1 , U2B21U

∗
2 , . . . , UkBkkU

∗
k )

converges in eigenvalues to a selfadjoint Hilbert-Schmidt operator almost surely. The limit-

ing eigenvalues can be computed by the asymptotic cyclic monotone independence of the pair

({Ai}ki=1, {UiBijU∗i })ki,j=1) and the asymptotic freeness of {U1B1jU
∗
1 }kj=1, . . . , {UkBkjU∗k}kj=1.

In the context of several Haar unitary random matrices, we can investigate about asymp-

totic cyclic monotone independence when the Ai matrices are conjugated instead of the Bi

matrices in a similar way that we saw in Remark 5.2.2. This problem has an interesting

answer which reduces the set of polynomials with a non-zero asymptotic distribution.

Proposition 5.3.4. Let n ∈ N. Let Ui = Ui(n) be n×n independent Haar unitary random

matrices for i = 1, . . . , k and Ai = Ai(n), Bj = Bj(n), i, j = 1, . . . , k, be n×n deterministic

matrices such that
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1. ((A1, . . . , Ak),Trn) converges in distribution to a k-tuple of trace class operators as

n→∞.

2. ((B1, . . . , Bk), trn) converges in distribution to a k-tuple of elements in a non-commutative

probability space as n→∞.

Then for any numbers 1 ≤ i1, . . . , ik ≤ k such that there exist r, s ∈ {1, . . . , k} with ir 6= is,

we have that Trn
(
Ui1A1U

∗
i1
B1 · · ·UikAkU∗ikBk

)
converges to zero almost surely.

Proof. Let 1 ≤ i1, . . . , ik ≤ k be positive integers such that there exist r, s with ir 6= is.

Without loss of generality, we can assume that ir = 1 and is = 2. It will be enough to show

that the conditional expectation

E
(∣∣Trn(Ui1A1U

∗
i1B1 · · ·UikAkU

∗
ik
Bk)

∣∣2 |U2, . . . , Uk

)
= O(n−2) almost surely. (5.30)

Indeed if (5.30) holds, then by conditional monotone convergence theorem

∞∑
n=1

∣∣Trn(Ui1A1U
∗
i1B1 · · ·UikAkU

∗
ik
Bk)

∣∣2
is finite almost surely and so Trn(Ui1A1U

∗
i1
B1 · · ·UikAkU∗ikBk) converges to zero almost

surely. For notation convenience, we shall denote the conditional expectation respect to

σ(U2, . . . , Uk) simply as EU1 .

First we notice that by properties of the trace, we can write

EU1

(∣∣Trn(Ui1A1U
∗
i1B1 · · ·UikAkU

∗
ik
Bk)

∣∣2)
= EU1 (Trn(C1U1D1U

∗
1 · · ·C`U1D`U

∗
1 ) Trn(C`+1U1D`+1U

∗
1 · · ·C2`U1D2`U

∗
1 )) ,

where the Dj ’s are Ar or A∗r for some 1 ≤ r ≤ k and the Ci’s are products of Bp, B
∗
p and

the other UqArU
∗
q for q ≥ 2. By the initial assumption, at least one of the {C1, . . . , C`} and

at least one of the {C`+1, . . . , C2`} have a factor U2ArU
∗
2 for some 1 ≤ r ≤ k. Considering

Z = (1, . . . , `)(`+ 1, . . . , 2`) ∈ S2`, we can use the Weingarten formula (5.7) in order to get

EU1

(∣∣Trn(Ui1A1U
∗
i1B1 · · ·UikAkU

∗
ik
Bk)

∣∣2)
=

∑
σ1,σ2,σ3∈S2`
σ1σ2σ3=Z

Trσ1(C1, . . . , . . . , C2`) Trσ2(D1, . . . , D2`)Wg(σ3, n). (5.31)

We proceed to compute the order of each factor in the previous sum. Since (B1, . . . , Bk) con-

verges in distribution with respect trn, we have that Trσ1(C1, . . . , C2`) is at least O(n2`−|σ1|).

But we recall that there are at least two factors U2A
ε
rU
∗
2 in two different Ci’s. Using again
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the Weingarten formula, we can show that the trace of a product of Ci’s containing at

least a factor Ar is O(1). Hence, it is possible to show that for any σ1, Trσ1(C1, . . . , C2`) is

O(n2`−2). In fact, if |σ1| ≥ 2, it is done. Otherwise, we have that σ1 is equal to the identity

element or is equal to a transposition. If σ1 is the identity element in S2`, then

Trσ1(C1, . . . , C2`) =
2∏̀
i=1

Trn(Ci).

But two of the Ci’s contain a factor U2A
ε
rU
∗
2 , then two of the Trn(Ci)’s have order O(1)

and so Trσ1(C1, . . . , C2`) = O(n2`−2). A similar reasoning works in the case that σ2 is a

transposition and hence Trσ1(C1, . . . , C2`) = O(n2`−2).

By assumption, we have that Trσ2(D1, . . . , D2`) = O(1). Finally, the asymptotic behav-

ior of Wg(σ3, n) is O(n−2`−|σ3|) and this allows us to conclude that

Trσ1(C1, . . . , . . . , C2`) Trσ2(C1, . . . , C2`)Wg(σ3, n) = O(n−2).

�

5.4 Some Computations of Eigenvalues of Polynomials of

Random Matrices

In this section, we shall combine the results about asymptotic cyclic monotone independence

of random matrices studied in previous sections with the explicit formulas for the eigenvalues

of the polynomials of cyclically monotone elements proved in Theorem 4.2.1. We state the

corresponding results on random matrices in the framework of compact operators. As we

did in the proof of Theorem 5.3.1, firstly we shall prove the theorem for trace class operators

and then we will conclude by approximation.

Theorem 5.4.1. Let n ∈ N. Let U = U(n) be an n× n Haar unitary random matrix and

Ai = Ai(n), Bj = Bj(n), i = 1, . . . , k, j = 1, . . . , k be n × n deterministic matrices such

that

1. A1, . . . , Ak are Hermitian,

2. ((A1, . . . , Ak),Trn) converges in compact distribution to a k-tuple of compact operators

((a1, . . . , ak),TrH) as n→∞,

3. ((B1, . . . , Bk), trn) converges in distribution to a k-tuple of elements in a non-commutative

probability space as n→∞,
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4. supn∈N ‖Bi(n)‖ <∞ for every i = 1, . . . , k.

Under the assumption 3), we can define βi = limn→∞ trn(Bi), βij = limn→∞ trn(B∗iBj).

1. If we denote B = (βij)
k
i,j=1 ∈Mk(C), then

lim
n→∞

EV

(
k∑
i=1

UBiU
∗Ai(UBiU

∗)∗

)
= EV

(√
B diag(a1, . . . , ak)

√
B
)

a.s.

where
√
B diag(a1, . . . , ak)

√
B ∈

(
Mk(C)⊗ S1(H),Trk⊗TrH

)
.

2. If B1, . . . , Bk are Hermitian, then

lim
n→∞

EV

(
k∑
i=1

AiUBiU
∗Ai

)
= EV

(
k∑
i=1

βia
2
i

)
a.s.

3. Suppose that k = 1 and B1 is Hermitian. If we define p =
√
β11+β1, q = −(

√
β11−β1)

and r =
√
β11 − β2

1 , then

lim
n→∞

EV (A1UB1U
∗ + UB1U

∗A1) = pEV(a1) t qEV(a1) a.s.,

lim
n→∞

EV (i (A1UB1U
∗ − UB1U

∗A1)) = rEV(a1) t (−r)EV(a1) a.s.

Proof. Only the proof of (1) is presented here. The other cases can be proved with the same

ideas. We recall the notations defined in the proof of Theorem 5.3.1. Once again, we write

Bi instead of UBiU
∗. So, if P (x1, . . . , xk, y1, . . . , yk) =

∑k
i=1 yixiy

∗
i , we denote {λi(n)}∞i=1

as the eigenvalues of the matrix P (A1, . . . , Ak, B1, . . . , Bk) for each n ∈ N, {λi}∞i=1 as the

limiting eigenvalues of P (A1, . . . , Ak, B1, . . . , Bk) (which are defined by Theorem 5.3.1),

{λ(j)
i (n)}∞i=1 as the eigenvalues of the matrix P (A

(j)
1 , . . . , A

(j)
k , B1, . . . , Bk), and {λ(j)

i }∞i=1 as

the limiting eigenvalues of P (A
(j)
1 , . . . , A

(j)
k , B1, . . . , Bk). As in the proof of Theorem 5.3.1,

we have that a
(j)
p are trace class operators. Applying Theorem 4.2.1 along with the almost

sure asymptotic cyclically monotone independence provided by Theorem 5.2.4, we get that{
λ

(j)
i

}∞
i=1

= EV
(√

B diag
(
a

(j)
1 , . . . , a

(j)
k

)√
B
)
. (5.32)

On the other hand, if we denote the eigenvalues of
√
B diag(a1, . . . , ak)

√
B as {λ′i}∞i=1, then

we have to show that λi = λ′i for i ∈ N. Using triangle’s inequality, it can be shown that

∣∣λ±i − (λ′i)
±∣∣ ≤ ∣∣λ±i − λ±i (n)

∣∣+

∣∣∣∣λ±i (n)−
(
λ

(j)
i

)±
(n)

∣∣∣∣
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+

∣∣∣∣(λ(j)
i

)±
(n)−

(
λ

(j)
i

)±∣∣∣∣+

∣∣∣∣(λ(j)
i

)±
− (λ′i)

±
∣∣∣∣

We have four terms in the right-hand side of the above inequality. The first of them

converges to zero as n → ∞ provided by Theorem 5.3.1. The second term is bounded by

δj for any n ∈ N. The third term also converges to 0 as n→∞. Then

∣∣λ±i − (λ′i)
±∣∣ = lim sup

j→∞
lim sup
n→∞

∣∣λ±i − (λ′i)
±∣∣ ≤ lim sup

j→∞

∣∣∣∣(λ(j)
i

)±
− (λ′i)

±
∣∣∣∣ .

The proof will be complete if we show that λ
(j)
i → λ′i as j →∞, for any i ≥ 1. This can be

done by noticing that, in the same way that we get Equation (5.26), it is satisfied that

lim
j→∞

∥∥∥√B diag
(
a

(j)
1 , . . . , a

(j)
k

)√
B −

√
B diag(a1, . . . , ak)

√
B
∥∥∥ = 0

along with that
∣∣∣λ(j)
i − λ′i

∣∣∣ ≤ δj , for any j ≥ 1. Finally, lim supj→∞

∣∣∣∣(λ(j)
i

)±
− (λ′i)

±
∣∣∣∣ = 0

and so λi = λ′i for any i ∈ N. Then the proof is now complete. �

In a similar way, we can provide a version for random matrices of Propositions 4.2.2 and

4.2.5. For instance, we present the precise statement for Proposition 4.2.5.

Proposition 5.4.2. Let n ∈ N. Let U = U(n) be an n × n Haar unitary random matrix

and A = A(n), Bi = Bi(n), Cj = Cj(n), i, j = 1, . . . , k, be n × n deterministic matrices

such that

1. A is Hermitian and (A,Trn) converges in compact distribution to a compact operator

(a,TrH) as n→∞,

2. ((B1, C1 . . . , Bk, Ck), trn) converges in distribution to a 2k-tuple of elements in a non-

commutative probability space as n→∞,

3. supn∈N ‖Bi(n)‖ <∞, supn∈N ‖Ci(n)‖ <∞ for every i = 1, . . . , k.

Under the assumption 2), let βij = limn→∞ trn(CiBj) and B′ = (βij)
k
i,j=1. Let λ1, . . . , λk

be the k eigenvalues of B′ counting multiplicity. If

k∑
i=1

(UBiU
∗)A(UCiU

∗)
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is Hermitian, then

lim
n→∞

EV

(
k∑
i=1

(UBiU
∗)A(UCiU

∗)

)
=

k⊔
i=1

λiEV(a). (5.33)

We also have explicit formulas when we are considering several Haar unitary random

matrices instead of only one. However, we have to take into account Proposition 5.3.4

in order to get non-trivial conclusions. The combination of the explicit computation of

eigenvalues and the asymptotic cyclic monotone independence in our studied random matrix

models can be stated as follows.

Proposition 5.4.3. Let n ∈ N. Let Ui = Ui(n) be n×n independent Haar unitary random

matrices for 1 ≤ i ≤ k. We consider the assumptions of Theorem 5.4.1. If we define

βi = limn→∞ trn(B∗iBi), then

lim
n→∞

EV

(
k∑
i=1

BiUiAiU
∗
i B
∗
i

)
=

k⊔
i=1

EV(βiai) a.s.

Proof. In the next proof, we only show the case that the limiting random variables a1, . . . , ak

are trace class operator. The general case of compact operators can be treated as in the

proof of Theorem 5.4.1.

Using Theorem 5.3.4, the limiting trace of monomials with two different Ui’s in their

factors is equal to zero almost surely. So, we can write for each m ∈ N

lim
n→∞

Trn

((
k∑
i=1

BiUiAiU
∗
i B
∗
i

)m)
=

k∑
i=1

lim
n→∞

Trn ((BiUiAiU
∗
i B
∗
i )m)

=

k∑
i=1

lim
n→∞

Trn ((Ai(U
∗
i B
∗
iBiUi))

m)

(by a.s. asymptotic cyclic monotonicity) =

k∑
i=1

lim
n→∞

Trn(Ami ) lim
n→∞

trn(B∗iBi)
m

=
k∑
i=1

TrH ((βiai)
m) .

We finish the proof by using Proposition 1.3.6. �
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5.5 Numerical Experiments

The final section of this manuscript is dedicated to present some examples of numerical

simulations in order to illustrate the results of Section 5.4. For notational convenience, the

index n is omitted in the n× n matrices.

Example 5.5.1. We consider the case of the commutator and the anti-commutator. We

take n = 300 for the simulations. Let A = diag(20, 2−1, 2−2, . . . , 2−n+1) and B = G2, where

G is a GUE random matrix. Let U be a Haar unitary random matrix. We know that B

converges in distribution to s2, where s is a standard semicircular element. In particular,

we have that β1 = limn→∞ trn(B) = 1 and β11 = limn→∞ trn(B2) = 2. Also, it is clear that

A converges in compact distribution to a where EV(a) = {2−k : k ∈ N0}. Theorem 5.4.1

establishes that

lim
n→∞

EV(AUBU∗ + UBU∗A) = pEV(a) t qEV(a),

where in this case, p =
√
β11 + β1 =

√
2 + 1 and q = −(

√
β11) − β1) = 1 −

√
2. We now

present the first ten eigenvalues of a realization of the random matrices.

Figure 5.1: Comparison between eigenvalues of AUBU∗ + UBU∗A (black circles) and
pEV(a) t qEV(a) (red triangles).

We also show a comparison between the first three moments of the commutator with respect

Trn and the moments provided by the rule of cyclic monotone independence.
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k Trn((AUBU∗ + UBU∗A)k) Tr(ak)(pk + qk)

1 3.894818 4
2 7.910895 8
3 16.33332 16

Table 5.1: First three moments of AUBU∗ + UBU∗A compared to the theoretical limiting
moments.

The same procedure is done in the case of the anti-commutator. Theorem 5.4.1 estab-

lishes that

lim
n→∞

EV(i(AUBU∗ − UBU∗A)) = rEV(a) t −rEV(a),

where r =
√
β11 − β2

1 = 1. The plot of the first ten eigenvalues and the table of the first

three moments compared with the moments provided by the cyclic monotone independence

rule are the following:

Figure 5.2: Comparison between eigenvalues of i(AUBU∗ − UBU∗A) (black circles) and
rEV(a) t −rEV(a) (red triangles).

k Trn((AUBU∗ + UBU∗A)2k) 2 Tr(a2k)r2k

1 2.717913 2.666667
2 2.227108 2.133333
3 2.16769 2.031746

Table 5.2: First three moments of i(AUBU∗−UBU∗A) compared to the theoretical limiting
moments.
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Example 5.5.2. In this case, we consider A1 = A2 = A3 = diag(20, 2−1, . . . , 2−n+1) andB1,

B2, B3 independent GUE random matrices, with n = 300. We have again that (A1, A2, A3)

converges in compact distribution to (a1, a2, a3) with respect to Trn and (B1, B2, B3) con-

verges in distribution with respect to trn. If U1, U2, U3 are independent Haar unitary

random matrices, Proposition 5.4.3 states that

lim
n→∞

EV (B1U1A1U
∗
1B
∗
1 +B2U2A2U

∗
2B
∗
2 +B3U3A3U

∗
3B
∗
3) = EV(β1a1)tEV(β2a2)tEV(β3a3),

where βi = limn→∞ trn(B∗iBi) = 1, for i = 1, 2, 3. Since EV(ai) = {2−k : k ≥ 0}, the

limiting eigenvalues are

{1, 1, 1, 1/2, 1/2, 1/2, 1/4, 1/4, 1/4, 1/8, 1/8, 1/8, . . .}.

Figure 5.3: First 15 eigenvalues of
∑3

k=1BiUiAiU
∗
i B
∗
i .

We also compute the first three moments and the moments given by cyclic monotone inde-

pendence.

k Trn((
∑3

k=1BiUiAiU
∗
i B
∗
i )k) 3 Tr(ak)

1 5.928757 6
2 3.951528 4
3 3.391974 3.428571

Table 5.3: First three moments of
∑3

k=1BiUiAiU
∗
i B
∗
i compared to the theoretical limiting

moments.
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Example 5.5.3. We illustrate the asymptotic version in random matrices of Proposition

4.2.2. Let n = 300. Let B1 and B2 be independent n × n selfadjoint random matrices

whose entries are independent real Gaussian random variables with mean zero and variance

2. Consider D = diag(20, 2−1, . . . , 2−n+1) and U1, U independent Haar unitary random

matrices and independent of B1 and B2. We take A1 = D and A2 = U1DU
∗
1 . Define the

block matrices

A =

(
A1 0

0 A2

)
, B =

(
UB2

1U
∗ 0

0 UB2
2U
∗

)
. (5.34)

We shall show a realization of the eigenvalues of AB and we shall compare them with the

eigenvalues of A′B′ where A′ = limn→∞A and

B′ =

 lim
n→∞

trn(B2
1) 0

0 lim
n→∞

trn(B2
2)

 =

(
4 0

0 4

)
.

The first 15 eigenvalues of AB and A′B′ are plotted in the next graphic:

Figure 5.4: Comparison between eigenvalues of AB (black circles) and A′B′ (red triangles).

k Tr2n((AB)k) Tr2n((A′B′)k)

1 15.65416 16
2 40.45189 42.66667
3 134.869 146.2857

Table 5.4: First three moments of AB and A′B′.
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Example 5.5.4. We show another numerical simulation for Proposition 4.2.2. Again,

let n = 300. Let B1, B2 and B3 be independent n × n GUE random matrices, D =

diag(20, 2−1, . . . , 2−n+1), and U1, U2 be independent Haar unitary random matrices. We

take A1 = D,A2 = U1DU
∗
1 and A3 = U2DU

∗
2 . Define the block matrices

A =

(
A1 A2

A∗2 A3

)
, B =

(
B2

1 B2
2

B2
2 B2

3

)
. (5.35)

We shall show a realization of the eigenvalues of BAB and we shall compare them with the

eigenvalues of A′B′ where A′ = limn→∞A and

B′ = lim
n→∞

(Id⊗ trn)(B2)

=

 lim
n→∞

trn(B4
1 +B4

2) lim
n→∞

trn(B2
1B

2
2 +B2

2B
2
3)

lim
n→∞

trn(B2
2B

2
1 +B2

3B
2
2) lim

n→∞
trn(B4

2 +B4
3)


=

(
4 2

2 4

)
.

In the last equality, we use the fact that the B1, B2 and B3 asymptotically behaves as a free

semicircular family. Also again, a graphic of the first 15 eigenvalues of BAB and A′B′, and

a comparison of the first three moments are provided.

Figure 5.5: Comparison between eigenvalues ofBAB (black circles) andA′B′ (red triangles).
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k Tr2n((BAB)k) Tr2n((A′B′)k)

1 23.70467 24
2 95.90039 96.85024
3 383.8305 393.54777

Table 5.5: First three moments of BAB and A′B′.

Example 5.5.5. Finally, we give a numerical example for Proposition 5.4.2. Let n = 400.

Consider the matrices A = diag(20, 2−1, 2−2, . . . , 2−n+1) and B and C independent GUE

random matrices, and U be an n×n Haar unitary random matrix. According to Proposition

5.4.2, the limiting eigenvalues of

UBU∗AUCU∗ + UCU∗AUBU∗ (5.36)

are λ1EV(a) t λ2EV(a), where a = diag(20, 2−1, . . . , ) and λ1, λ2 are the eigenvalues of the

matrix

lim
n→∞

id⊗ trn

(
UCU∗UBU∗ UCU∗UCU∗

UBU∗UBU∗ UBU∗UCU∗

)
= lim

n→∞

(
trn(CB) trn(C2)

trn(B2) trn(BC)

)
=

(
1 2

2 1

)
.

Hence λ1 = 3 and λ2 = −1. Then, the limiting eigenvalues multiset is

{3 · 2−n,−2−n : n ≥ 0}.

A numerical realization of the matrix (5.36) is done. We provide a comparison of the first

three moments and the theoretical limiting moments.

k Trn((UBU∗AUCU∗ + UCU∗AUBU∗)k) 2 Tr(ak)

1 4.042675 4
2 14.31484 13.33333
3 32.9917 29.71429

Table 5.6: First three moments of UBU∗AUCU∗ + UCU∗AUBU∗ and the theoretical
limiting moments.

Finally, we compare the first 15 eigenvalues to the theoretical limiting eigenvalues.
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Figure 5.6: Black circles correspond to the eigenvalues a realization of the matrix (5.36).
Red crosses correspond to the limiting theoretical eigenvalues.



Appendix A

A characterization of Trσ

The objective of this appendix is to give a proof of the Weingarten formula used in Chapter

5. First, we recall the necessary notation to state the result. Let k ∈ N and Sk be the

symmetric group acting on {1, 2, . . . , k}. We consider ρ : Sk → Mn(C)⊗k the map where

for each σ ∈ Sk, ρ(σ) : Mn(C)⊗k →Mn(C)⊗k is a linear transformation such that

ρ(σ)(v1 ⊗ · · · ⊗ vk) = vσ−1(1) ⊗ · · · ⊗ vσ−1(k), ∀ v1, . . . , vk ∈ Cn. (A.1)

We have then that ρ is a unital group homomorphism. Throughout the proof, we shall

consider the canonical identification Mn(C)⊗k ∼= Mnk(C) as Hilbert spaces, given by the

Kronecker product. In this way, ρ(σ) is a permutation matrix for any σ ∈ Sk and so, it is

unitary. Since id = ρ(σσ−1) = ρ(σ)ρ(σ−1), we conclude that ρ(σ−1) = ρ(σ)−1 = ρ(σ)∗.

Now, fix σ ∈ Sk. We also fix A = A1 ⊗ · · · ⊗ Ak ∈ Mn(C)⊗k, where Ap ∈ Mn(C) for

p = 1, . . . , k. For a cycle c = (j1, j2, . . . , jm) of σ, we define Ac = Aj1Aj2 · · ·Ajm , and if

σ = c1c2 · · · c`(σ) is the cycle decomposition of σ, we define

Trσ (A1, . . . , Ak) =

`(σ)∏
j=1

Trn
(
Acj
)
. (A.2)

The next lemma gives us an alternative definition of Trσ. In the rest of the appendix, we

write Ap =
(
a

(p)
ij

)n
ij=1

for any p = 1, . . . , k.

Lemma A.1 (Exercise 4.1 in [12]). With the above notation, we have that

Trσ (A1, . . . , Ak) =
n∑

i1,...,ik=1

a
(1)
i1iσ(1)

a
(2)
i2iσ(2)

· · · a(k)
ikiσ(k)

. (A.3)

Proof. We know that (i, j)-entry of ApAq is equal to
∑n

k=1 a
(p)
ik a

(q)
kj . More generally, the

81
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(i1, i1)-entry of Aj1Aj2 · · ·Ajm is

n∑
i2,...,im=1

a
(j1)
i1i2

a
(j2)
i2i3
· · · a(jm)

imi1
.

Then if ck = (j1, j2, . . . , jm) is a cycle of σ, then

Trn(Ack) = Trn(Aj1Aj2 · · ·Ajm) =

n∑
i1,...,im=1

a
(j1)
i1i2

a
(j2)
i2i3
· · · a(jm)

imi1
,

where j1, . . . , jm and the indexes i1, . . . , im depend of k ∈ {1, . . . , `(σ)}. Making a change

of the indexes, we conclude that

Trσ(A1, . . . , Ak) =

`(σ)∏
i=1

Trn(Aci)

=

`(σ)∏
i=1

n∑
i1,...,im=1

a
(j1)
i1i2

a
(j2)
i2i3
· · · a(jm)

imi1

=
n∑

i1,...,ik=1

a
(1)
i1iσ(1)

a
(2)
i2iσ(2)

· · · a(k)
ikiσ(k)

.

�

Finally, we state and prove the desired formula which gives us another interesting char-

acterization of Trσ in the language of the natural representation ρ.

Theorem A.2. With the above notation, we have that

TrMn(C)⊗k (ρ(σ)∗A) = Trσ(A1, . . . , Ak). (A.4)

Proof. Recall that by definition, ρ(σ)∗ is a permutation matrix in Mnk(C). So, ρ(σ)∗A is a

matrix obtained by exchanging the rows of the matrix A in a specific way given by σ. By

the definition of the Kronecker product, a column of A is given by

(a
(1)
1i1
a

(2)
1i2
· · · a(k)

1ik
, a

(1)
1i1
a

(2)
1i2
· · · a(k)

2ik
, . . . , a

(1)
ni1
a

(2)
ni2
· · · a(k)

nik
)

= (a
(1)
1i1
, a

(1)
2i1
, . . . , a

(1)
ni1

)⊗ (a
(2)
1i2
, a

(2)
2i2
, . . . , a

(2)
ni2

)⊗ · · · ⊗ (a
(k)
1ik
, a

(k)
2ik
, . . . , a

(k)
nik

)

for some i1, . . . , ik ∈ {1, . . . , n}. We say that the above column is the column associated to

the k-tuple (i1, i2 . . . , ik) ∈ {1, . . . , n}k. Again by the rule of the Kronecker product, the
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entry in the diagonal of A, which is also in the column associated to (i1, . . . , ik), is precisely

a
(1)
i1i1

a
(2)
i2i2
· · · a(k)

ikik
.

On the other hand, since the columns of the matrix ρ(σ)∗A are the obtained by applying

ρ(σ)∗ to the columns of A, the column of ρ(σ)∗A determined by (i1, . . . , ik) is

ρ
(
σ−1

) (
(a

(1)
1i1
, a

(1)
2i1
, . . . , a

(1)
ni1

)⊗ (a
(2)
1i2
, a

(2)
2i2
, . . . , a

(2)
ni2

)⊗ · · · ⊗ (a
(k)
1ik
, a

(k)
2ik
, . . . , a

(k)
nik

)
)

= (a
(σ(1))
1iσ(1)

, a
(σ(1))
2iσ(1)

, . . . , a
(σ(1))
niσ(1)

)⊗(a
(σ(2))
1iσ(2)

, a
(σ(2))
2iσ(2)

, . . . , a
(σ(2))
niσ(2)

)⊗· · ·⊗(a
(σ(k))
1iσ(k)

, a
(σ(k))
2iσ(k)

, . . . , a
(σ(k))
niσ(k)

).

Note that the entries of ρ(σ)∗A are again products of the entries of the matrices A1, . . . , Ak.

Also, the entry in the diagonal of ρ(σ)∗A in the column associated to (i1, . . . , ik) is

a
(σ(1))
i1iσ(1)

a
(σ(2))
i2iσ(2)

· · · a(σ(k))
ikiσ(k)

.

Summing over all the possible indexes and applying Lemma A.1, we have that

Trnk(ρ(σ)∗A) =

n∑
i1,...,ik=1

a
(σ(1))
i1iσ(1)

a
(σ(2))
i2iσ(2)

· · · a(σ(k))
ikiσ(k)

= Trσ
(
Aσ(1), Aσ(2), . . . , Aσ(k)

)
.

Now, if c = (j1, . . . , jm) is a cycle in σ, then σ(jr) = jr+1, for r = 1, . . . ,m mod m. By

cyclic property of trace, we have that

Trn
(
(Aσ(1) ⊗ · · · ⊗Aσ(k))c

)
= Trn

(
Aσ(j1)Aσ(j2) · · ·Aσ(jm−1)Aσ(jm)

)
= Trn (Aj2Aj3 · · ·AjmAj1)

= Trn (Aj1Aj2Aj3 · · ·Ajm)

= Trn (Ac) .

Finally, we conclude that

Trσ
(
Aσ(1), . . . , Aσ(k)

)
=

`(σ)∏
j=1

Trn
(
(Aσ(1) ⊗ · · · ⊗Aσ(k))cj

)
=

`(σ)∏
j=1

Trn
(
Acj
)

= Trσ (A1, . . . , Ak) .
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Hence

TrMn(C)⊗k (ρ(σ)∗A) = Trσ
(
Aσ(1), Aσ(2), . . . , Aσ(k)

)
= Trσ (A1, A2, . . . , Ak) ,

and so (A.4) is proved. �
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